University of Leeds, Leeds, UK.
University of Chicago, Chicago, USA.
Sci Rep. 2016 Jul 14;6:29179. doi: 10.1038/srep29179.
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.
刚地弓形虫是最常见的人类脑部和眼部寄生虫感染,可终生存在,可逐渐损害视力,目前无法治愈。急需新的、可治愈的药物。在此,我们开发了新的模型来促进药物研发:EGS 株刚地弓形虫在体外形成囊包,可诱导猫体内形成卵囊,这是囊包的金标准标准。这些囊包高度表达细胞色素 b。利用这些模型,我们设想并创造了新型 4-(1H)-喹啉酮支架,这些支架靶向细胞色素 bc1 复合物 Qi 位点,其中,取代的 5,6,7,8-四氢喹啉-4-酮可抑制体外(IC50,30 nM)和体内(25 mg/kg)的活性感染和囊包,并抑制耐药性疟原虫(IC50,<30 nM),与临床相关的协同作用。酵母突变体和共结晶研究表明,它与 bc1 复合物 Qi 位点结合。我们的研究结果直接影响到改善患有弓形体病、疟疾和大约 20 亿人患有慢性包囊的布鲁氏菌感染的患者的治疗效果。