Wyart Matthieu, Silbert Leonardo E, Nagel Sidney R, Witten Thomas A
Service de Physique de l'Etat Condensé (CNRS URA 2464), DSM/DRECAM, CEA Saclay, 91191 Gif sur Yvette, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 1):051306. doi: 10.1103/PhysRevE.72.051306. Epub 2005 Nov 30.
Glasses have a large excess of low-frequency vibrational modes in comparison with most crystalline solids. We show that such a feature is a necessary consequence of the weak connectivity of the solid, and that the frequency of modes in excess is very sensitive to the pressure. We analyze, in particular, two systems whose density D(omega) of vibrational modes of angular frequency omega display scaling behaviors with the packing fraction: (i) simulations of jammed packings of particles interacting through finite-range, purely repulsive potentials, comprised of weakly compressed spheres at zero temperature and (ii) a system with the same network of contacts, but where the force between any particles in contact (and therefore the total pressure) is set to zero. We account in the two cases for the observed (a) convergence of D(omega) toward a nonzero constant as omega-->0, (b) appearance of a low-frequency cutoff omega*, and (c) power-law increase of omega* with compression. Differences between these two systems occur at a lower frequency. The density of states of the modified system displays an abrupt plateau that appears at omega*, below which we expect the system to behave as a normal, continuous, elastic body. In the unmodified system, the pressure lowers the frequency of the modes in excess. The requirement of stability despite the destabilizing effect of pressure yields a lower bound on the number of extra contact per particle deltaz:deltaz> or =p1/2, which generalizes the Maxwell criterion for rigidity when pressure is present. This scaling behavior is observed in the simulations. We finally discuss how the cooling procedure can affect the microscopic structure and the density of normal modes.
与大多数晶体固体相比,玻璃具有大量过剩的低频振动模式。我们表明,这样的特征是固体弱连通性的必然结果,并且过剩模式的频率对压力非常敏感。我们特别分析了两个系统,其角频率为ω的振动模式的密度D(ω)随堆积分数呈现标度行为:(i) 通过有限范围、纯排斥势相互作用的颗粒的堵塞堆积模拟,由零温度下弱压缩的球体组成;(ii) 具有相同接触网络的系统,但其中任何接触颗粒之间的力(因此总压力)被设置为零。我们在这两种情况下解释了观察到的:(a) 当ω→0时,D(ω)趋向于一个非零常数的收敛;(b) 低频截止ω的出现;以及(c) ω随压缩的幂律增加。这两个系统之间的差异出现在较低频率。修改后系统的态密度显示出在ω*处出现的突然平台,在其之下我们预期系统表现为正常的、连续的弹性体。在未修改的系统中,压力降低了过剩模式的频率。尽管压力有破坏稳定性的作用,但稳定性的要求产生了每个颗粒额外接触数δz的下限:δz≥p1/2,这推广了存在压力时刚性的麦克斯韦准则。这种标度行为在模拟中被观察到。我们最后讨论了冷却过程如何影响微观结构和正常模式的密度。