School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China.
Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Mar;9(2). doi: 10.1002/wnan.1419. Epub 2016 Jul 15.
Metallic nanoparticles (NP) have been used for biomedical applications especially for imaging. Compared to nonmetallic NP, metallic NP provide high contrast images because of their optical light scattering, magnetic resonance, X-ray absorption, or other physicochemical properties. In this review, a series of in vitro imaging techniques for metallic NP will be introduced, meanwhile their strengths and weaknesses will be discussed. By utilizing these imaging methods, the cellular uptake of metallic NP can be easily visualized to better understand the endocytic mechanisms of NP intracellular delivery. Several types of metallic NP that are used for imaging or as contrast agents such as quantum dots, gold, iron oxide, and other metallic NP will be presented. Cellular uptake of metallic NP and associated endocytic mechanisms highly depends upon the NP size, charge, surface coating, shape, or other factors such as cell type, cell differentiation status, cell surface status, external forces, protein binding, temperature, and the biological milieu. Classical endocytic routes such as lipid raft-mediated pathways, clathrin or caveolae-mediated pathways, macropinocytosis, and phagocytosis have been investigated, yet there is still a demand to determine other endocytic pathways. Knowing the different methodologies used to determine the endocytic pathways will increase the understanding of NP toxicity, cancer cell targeting, and imaging, so that surface coatings can be created for efficient cell uptake of metallic NP with minimal cytotoxicity WIREs Nanomed Nanobiotechnol 2017, 9:e1419. doi: 10.1002/wnan.1419 For further resources related to this article, please visit the WIREs website.
金属纳米粒子(NP)已被用于生物医学应用,特别是用于成像。与非金属 NP 相比,由于其光学光散射、磁共振、X 射线吸收或其他物理化学性质,金属 NP 提供了高对比度的图像。在这篇综述中,将介绍一系列用于金属 NP 的体外成像技术,同时讨论它们的优缺点。通过利用这些成像方法,可以轻松地可视化金属 NP 的细胞摄取,以更好地了解 NP 细胞内递药的内吞机制。将介绍几种用于成像或作为造影剂的金属 NP,如量子点、金、氧化铁和其他金属 NP。金属 NP 的细胞摄取及其相关内吞机制高度取决于 NP 的尺寸、电荷、表面涂层、形状或其他因素,如细胞类型、细胞分化状态、细胞表面状态、外部力、蛋白结合、温度和生物环境。已经研究了经典的内吞途径,如脂筏介导途径、网格蛋白或小窝介导途径、巨胞饮作用和吞噬作用,但仍需要确定其他内吞途径。了解用于确定内吞途径的不同方法将增加对 NP 毒性、癌细胞靶向和成像的理解,从而可以为具有最小细胞毒性的金属 NP 的高效细胞摄取创建表面涂层。 WIREs Nanomed Nanobiotechnol 2017, 9:e1419. doi: 10.1002/wnan.1419 如需了解本文相关资源,请访问 WIREs 网站。