Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, USA.
Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, USA.
Kidney Int. 2016 Aug;90(2):259-261. doi: 10.1016/j.kint.2016.05.018.
Computational intelligence for the prediction of hemoglobin to guide the selection of erythropoiesis-stimulating agent dose results in improved anemia management. The models used for the prediction result from the use of individual patient data and help to increase the number of hemoglobin observations within the target range. The benefits of using these modeling techniques appear to be a decrease in erythropoiesis-stimulating agent use and a decrease in the number of transfusions. This study confirms the results of previous smaller studies and suggests that additional beneficial results may be achieved.
计算智能在预测血红蛋白以指导促红细胞生成素刺激剂剂量选择方面的应用,改善了贫血管理。用于预测的模型源自个体患者数据的使用,有助于增加目标范围内的血红蛋白观察数量。使用这些建模技术的好处似乎是减少促红细胞生成素刺激剂的使用和输血次数的减少。本研究证实了之前较小研究的结果,并表明可能会获得更多的有益结果。