Suppr超能文献

正常步态对体内胫股关节软骨应变的影响。

Effect of normal gait on in vivo tibiofemoral cartilage strains.

作者信息

Lad Nimit K, Liu Betty, Ganapathy Pramodh K, Utturkar Gangadhar M, Sutter E Grant, Moorman Claude T, Garrett William E, Spritzer Charles E, DeFrate Louis E

机构信息

Duke Sports Medicine Center, Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.

Duke Sports Medicine Center, Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

J Biomech. 2016 Sep 6;49(13):2870-2876. doi: 10.1016/j.jbiomech.2016.06.025. Epub 2016 Jun 27.

Abstract

Altered cartilage loading is believed to be associated with osteoarthritis development. However, there are limited data regarding the influence of normal gait, an essential daily loading activity, on cartilage strains. In this study, 8 healthy subjects with no history of knee surgery or injury underwent magnetic resonance imaging of a single knee prior to and following a 20-min walking activity at approximately 1.1m/s. Bone and cartilage surfaces were segmented from these images and compiled into 3-dimensional models of the tibia, femur, and associated cartilage. Thickness changes were measured across a grid of evenly spaced points spanning the models of the articular surfaces. Averaged compartmental strains and local strains were then calculated. Overall compartmental strains after the walking activity were found to be significantly different from zero in all four tibiofemoral compartments, with tibial cartilage strain being significantly larger than femoral cartilage strain. These results provide baseline data regarding the normal tibiofemoral cartilage strain response to gait. Additionally, the technique employed in this study has potential to be used as a "stress test" to understand how factors including age, weight, and injury influence tibiofemoral cartilage strain response, essential information in the development of potential treatment strategies for the prevention of osteoarthritis.

摘要

软骨负荷改变被认为与骨关节炎的发展有关。然而,关于正常步态(一种基本的日常负荷活动)对软骨应变的影响的数据有限。在本研究中,8名无膝关节手术或损伤史的健康受试者在以约1.1m/s的速度进行20分钟步行活动之前和之后,对单膝进行了磁共振成像。从这些图像中分割出骨和软骨表面,并编制成胫骨、股骨及相关软骨的三维模型。在跨越关节表面模型的均匀间隔点的网格上测量厚度变化。然后计算平均分区应变和局部应变。发现步行活动后的总体分区应变在所有四个胫股关节腔中均显著不同于零,胫骨软骨应变显著大于股骨软骨应变。这些结果提供了关于正常胫股软骨对步态应变反应的基线数据。此外,本研究中采用的技术有可能用作“压力测试”,以了解年龄、体重和损伤等因素如何影响胫股软骨应变反应,这是制定预防骨关节炎潜在治疗策略的关键信息。

相似文献

1
Effect of normal gait on in vivo tibiofemoral cartilage strains.
J Biomech. 2016 Sep 6;49(13):2870-2876. doi: 10.1016/j.jbiomech.2016.06.025. Epub 2016 Jun 27.
2
In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.
Am J Sports Med. 2015 Feb;43(2):370-6. doi: 10.1177/0363546514559821. Epub 2014 Dec 10.
3
In vivo tibiofemoral cartilage deformation during the stance phase of gait.
J Biomech. 2010 Mar 3;43(4):658-65. doi: 10.1016/j.jbiomech.2009.10.028. Epub 2009 Nov 5.
4
In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint.
Osteoarthritis Cartilage. 2010 Jul;18(7):909-16. doi: 10.1016/j.joca.2010.04.011. Epub 2010 Apr 29.
5
Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.
J Athl Train. 2017 Jun 2;52(6):560-566. doi: 10.4085/1062-2050-52.4.05.
6
In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.
Am J Sports Med. 2017 Oct;45(12):2817-2823. doi: 10.1177/0363546517712506. Epub 2017 Jul 3.
8
An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity.
J Biomech. 2016 Sep 6;49(13):3026-3030. doi: 10.1016/j.jbiomech.2016.05.030. Epub 2016 Jun 1.
9
Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion.
Clin Biomech (Bristol). 2017 Nov;49:101-106. doi: 10.1016/j.clinbiomech.2017.09.005. Epub 2017 Sep 8.
10
Kinematic characteristics of the tibiofemoral joint during a step-up activity.
Gait Posture. 2013 Sep;38(4):712-6. doi: 10.1016/j.gaitpost.2013.03.004. Epub 2013 Mar 28.

引用本文的文献

2
Tibiofemoral cartilage strain and recovery following a 3-mile run measured using deep learning segmentation of bone and cartilage.
Osteoarthr Cartil Open. 2024 Dec 5;7(1):100556. doi: 10.1016/j.ocarto.2024.100556. eCollection 2025 Mar.
3
Acute responses and recovery in the femoral cartilage morphology following running and cool-down protocols.
PeerJ. 2024 Oct 24;12:e18302. doi: 10.7717/peerj.18302. eCollection 2024.
4
Morphologic Response in Femoral Cartilage During and After 40-Minute Treadmill Running.
J Athl Train. 2024 Sep 1;59(9):906-914. doi: 10.4085/1062-6050-0659.22.
7
Comparative Tribology: Articulation-induced rehydration of cartilage across species.
Biotribology (Oxf). 2021 Mar;25. doi: 10.1016/j.biotri.2020.100159. Epub 2020 Dec 31.
9
Cumulative knee adduction moment during jogging causes temporary medial meniscus extrusion in healthy volunteers.
J Med Ultrason (2001). 2023 Apr;50(2):229-236. doi: 10.1007/s10396-023-01288-w. Epub 2023 Feb 17.
10

本文引用的文献

1
An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity.
J Biomech. 2016 Sep 6;49(13):3026-3030. doi: 10.1016/j.jbiomech.2016.05.030. Epub 2016 Jun 1.
3
An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability.
J Biomech. 2015 Sep 18;48(12):2934-40. doi: 10.1016/j.jbiomech.2015.08.006. Epub 2015 Aug 13.
4
7
In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.
Am J Sports Med. 2015 Feb;43(2):370-6. doi: 10.1177/0363546514559821. Epub 2014 Dec 10.
9
The effects of femoral graft placement on cartilage thickness after anterior cruciate ligament reconstruction.
J Biomech. 2014 Jan 3;47(1):96-101. doi: 10.1016/j.jbiomech.2013.10.003. Epub 2013 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验