Department of Physical Education, Graduate School, Kyung Hee University, Yongin, Republic of Korea.
Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea.
PeerJ. 2024 Oct 24;12:e18302. doi: 10.7717/peerj.18302. eCollection 2024.
This study compared the immediate effects of two common post-exercise cool-down methods to a control condition on subsequent morphologic change in femoral cartilage and vascular response in the posterior tibial artery after running. Sixteen healthy young males (23.6 ± 2.2 years, 172.8 ± 4.9 cm, 72.2 ± 7.1 kg) visited the laboratory during three separate sessions and performed 30-min of treadmill running (7.5 km/h for the initial 5-min, followed 8.5 km/h for 25-min). After running, participants experienced one of three 30-min cool-down protocols: active cool-down, cold application, or control (seated rest with their knee fully extended), in a counterbalanced order. Ultrasonographic assessments of femoral cartilage thickness (intercondylar, lateral, and medial) and posterior tibial artery blood flow were compared. To test condition effects over time, two-way analysis of variances and Tukey tests were used ( < 0.05) with Cohen's d effect sizes (ES). There was no condition by time interaction in femoral cartilage thickness (intercondylar: F = 0.91, = 0.61; lateral: F = 1.24, = 0.18; medial: F = 0.49, = 0.99). Regardless of time (condition effect: F > 3.24, < 0.04 for all tests), femoral cartilage in the cold application condition was thicker than the control condition (intercondylar: = 0.01, ES = 0.16; lateral: < 0.0001, ES = 0.24; medial: = 0.04. ES = 0.16). Regardless of condition (time effect: F > 10.31, < 0.0001 for all tests), femoral cartilage thickness was decreased after running (intercondylar: < 0.0001, ES = 1.37; lateral: < 0.0001, ES = 1.58; medial: < 0.0001, ES = 0.81) and returned to baseline levels within 40-min (intercondylar: = 0.09; lateral: = 0.64; medial: = 0.26). Blood flow volume was different (condition × time: F = 2.36, < 0.0001) that running-induced blood flow volume was maintained for 30-min for the active cool-down condition ( < 0.0001, ES = 1.64), whereas it returned to baseline levels within 10-min for other conditions (cold application: = 0.67; control: = 0.62). Neither blood flow nor temperature had a significant impact on the recovery in femoral cartilage after running.
这项研究比较了两种常见的运动后冷却方法(主动冷却、冷疗)与一种对照条件(坐姿休息,膝关节完全伸展)对跑步后股骨软骨形态变化和胫骨后动脉血管反应的即时影响。16 名健康年轻男性(23.6±2.2 岁,172.8±4.9cm,72.2±7.1kg)在三个不同的时间段内到实验室进行了 30 分钟的跑步机跑步(前 5 分钟以 7.5km/h 的速度,随后 25 分钟以 8.5km/h 的速度)。跑步后,参与者以平衡的顺序经历了三种 30 分钟的冷却方案之一:主动冷却、冷疗或对照(坐姿休息,膝关节完全伸展)。使用超声评估股骨软骨厚度(髁间、外侧和内侧)和胫骨后动脉血流。为了测试条件随时间的影响,使用双向方差分析和 Tukey 检验( < 0.05),并使用 Cohen's d 效应量(ES)。股骨软骨厚度没有出现条件与时间的交互作用(髁间:F = 0.91, = 0.61;外侧:F = 1.24, = 0.18;内侧:F = 0.49, = 0.99)。无论时间如何(条件效应:F > 3.24, < 0.04),冷疗条件下的股骨软骨都比对照条件厚(髁间: = 0.01,ES = 0.16;外侧: < 0.0001,ES = 0.24;内侧: = 0.04,ES = 0.16)。无论条件如何(时间效应:F > 10.31, < 0.0001),跑步后股骨软骨厚度都减少(髁间: < 0.0001,ES = 1.37;外侧: < 0.0001,ES = 1.58;内侧: < 0.0001,ES = 0.81),并在 40 分钟内恢复到基线水平(髁间: = 0.09;外侧: = 0.64;内侧: = 0.26)。血流体积不同(条件×时间:F = 2.36, < 0.0001),主动冷却条件下的跑步诱导血流体积保持 30 分钟( < 0.0001,ES = 1.64),而其他条件下的血流体积在 10 分钟内恢复到基线水平(冷疗: = 0.67;对照: = 0.62)。无论是血流还是温度都没有对跑步后股骨软骨的恢复产生显著影响。