Suppr超能文献

在体测量局部胫股关节软骨对动态活动的应变。

In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.

作者信息

Sutter E Grant, Widmyer Margaret R, Utturkar Gangadhar M, Spritzer Charles E, Garrett William E, DeFrate Louis E

机构信息

Duke Sports Medicine Center, Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA.

Duke Sports Medicine Center, Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Am J Sports Med. 2015 Feb;43(2):370-6. doi: 10.1177/0363546514559821. Epub 2014 Dec 10.

Abstract

BACKGROUND

Altered local mechanical loading may disrupt normal cartilage homeostasis and play a role in the progression of osteoarthritis. Currently, there are limited data quantifying local cartilage strains in response to dynamic activity in normal or injured knees.

PURPOSE/HYPOTHESIS: To directly measure local tibiofemoral cartilage strains in response to a dynamic hopping activity in normal healthy knees. We hypothesized that local regions of cartilage will exhibit significant compressive strains in response to hopping, while overall compartmental averages may not.

STUDY DESIGN

Controlled laboratory study.

METHODS

Both knees of 8 healthy subjects underwent magnetic resonance imaging before and immediately after a dynamic hopping activity. Images were segmented and then used to create 3-dimensional surface models of bone and cartilage. These pre- and postactivity models were then registered using an iterative closest point technique to enable site-specific measurements of cartilage strain (defined as the normalized change in cartilage thickness before and after activity) on the femur and tibia.

RESULTS

Significant strains were observed in both the medial and lateral tibial cartilage, with each compartment averaging a decrease of 5%. However, these strains varied with location within each compartment, reaching a maximum compressive strain of 8% on the medial plateau and 7% on the lateral plateau. No significant averaged compartmental strains were observed in the medial or lateral femoral cartilage. However, local regions of the medial and lateral femoral cartilage experienced significant compressive strains, reaching maximums of 6% and 3%, respectively.

CONCLUSION

Local regions of both the femur and tibia experienced significant cartilage strains as a result of dynamic activity. An understanding of changes in cartilage strain distributions may help to elucidate the biomechanical factors contributing to cartilage degeneration after joint injury.

CLINICAL RELEVANCE

Site-specific measurements of in vivo cartilage strains are important because altered loading is believed to be a factor contributing to the development and progression of osteoarthritis. Specifically, this methodology and data could be used to evaluate the effects of soft tissue injuries (such as ligament or meniscus tears) on cartilage strains in response to dynamic activities of daily living.

摘要

背景

局部机械负荷改变可能破坏正常软骨内环境稳定,并在骨关节炎进展中起作用。目前,关于正常或受伤膝关节在动态活动时局部软骨应变的量化数据有限。

目的/假设:直接测量正常健康膝关节在动态单腿跳活动时局部胫股关节软骨应变。我们假设,软骨局部区域在单腿跳时会出现显著压缩应变,而整体间室平均值可能不会。

研究设计

对照实验室研究。

方法

8名健康受试者的双膝在动态单腿跳活动前后均接受磁共振成像检查。对图像进行分割,然后用于创建骨骼和软骨的三维表面模型。然后使用迭代最近点技术对这些活动前和活动后的模型进行配准,以便对股骨和胫骨上的软骨应变(定义为活动前后软骨厚度的归一化变化)进行特定部位测量。

结果

在内侧和外侧胫骨软骨中均观察到显著应变,每个间室平均下降5%。然而,这些应变在每个间室内随位置而异,在内侧平台达到最大压缩应变8%,在外侧平台达到7%。在内侧或外侧股骨软骨中未观察到显著的平均间室应变。然而,内侧和外侧股骨软骨的局部区域经历了显著压缩应变,分别达到最大值6%和3%。

结论

由于动态活动,股骨和胫骨的局部区域均经历了显著的软骨应变。了解软骨应变分布的变化可能有助于阐明关节损伤后导致软骨退变的生物力学因素。

临床意义

体内软骨应变的特定部位测量很重要,因为负荷改变被认为是导致骨关节炎发生和进展的一个因素。具体而言,这种方法和数据可用于评估软组织损伤(如韧带或半月板撕裂)对日常生活动态活动时软骨应变的影响。

相似文献

1
In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.
Am J Sports Med. 2015 Feb;43(2):370-6. doi: 10.1177/0363546514559821. Epub 2014 Dec 10.
2
Effects of Anterior Cruciate Ligament Deficiency on Tibiofemoral Cartilage Thickness and Strains in Response to Hopping.
Am J Sports Med. 2019 Jan;47(1):96-103. doi: 10.1177/0363546518802225. Epub 2018 Oct 26.
3
In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.
Am J Sports Med. 2017 Oct;45(12):2817-2823. doi: 10.1177/0363546517712506. Epub 2017 Jul 3.
4
Effect of normal gait on in vivo tibiofemoral cartilage strains.
J Biomech. 2016 Sep 6;49(13):2870-2876. doi: 10.1016/j.jbiomech.2016.06.025. Epub 2016 Jun 27.
5
An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity.
J Biomech. 2016 Sep 6;49(13):3026-3030. doi: 10.1016/j.jbiomech.2016.05.030. Epub 2016 Jun 1.
7
A finite element model of the human knee joint for the study of tibio-femoral contact.
J Biomech Eng. 2002 Jun;124(3):273-80. doi: 10.1115/1.1470171.
8
Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees.
J Biomech. 2021 Feb 12;116:110210. doi: 10.1016/j.jbiomech.2020.110210. Epub 2020 Dec 28.
9
Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion.
Clin Biomech (Bristol). 2017 Nov;49:101-106. doi: 10.1016/j.clinbiomech.2017.09.005. Epub 2017 Sep 8.
10
The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults.
Am J Sports Med. 2012 Sep;40(9):2134-41. doi: 10.1177/0363546512449816. Epub 2012 Jun 22.

引用本文的文献

2
Tibiofemoral cartilage strain and recovery following a 3-mile run measured using deep learning segmentation of bone and cartilage.
Osteoarthr Cartil Open. 2024 Dec 5;7(1):100556. doi: 10.1016/j.ocarto.2024.100556. eCollection 2025 Mar.
3
Walking recovers cartilage compressive strain in vivo.
Osteoarthr Cartil Open. 2024 Oct 9;6(4):100526. doi: 10.1016/j.ocarto.2024.100526. eCollection 2024 Dec.
8
Visible and Near-Infrared Spectroscopy Enables Differentiation of Normal and Early Osteoarthritic Human Knee Joint Articular Cartilage.
Ann Biomed Eng. 2023 Oct;51(10):2245-2257. doi: 10.1007/s10439-023-03261-7. Epub 2023 Jun 18.
9
Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage.
Acta Biomater. 2023 Sep 1;167:69-82. doi: 10.1016/j.actbio.2023.06.015. Epub 2023 Jun 17.

本文引用的文献

1
TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1316-21. doi: 10.1073/pnas.1319569111. Epub 2014 Jan 13.
3
The effects of femoral graft placement on cartilage thickness after anterior cruciate ligament reconstruction.
J Biomech. 2014 Jan 3;47(1):96-101. doi: 10.1016/j.jbiomech.2013.10.003. Epub 2013 Oct 19.
5
Changes in dynamic medial tibiofemoral contact mechanics and kinematics after injury of the anterior cruciate ligament: a cadaveric model.
Proc Inst Mech Eng H. 2013 Sep;227(9):1027-37. doi: 10.1177/0954411913490387. Epub 2013 Jun 26.
6
Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction.
Am J Sports Med. 2013 Mar;41(3):550-9. doi: 10.1177/0363546512473568. Epub 2013 Feb 4.
7
Lateral wedges alter mediolateral load distributions at the knee joint in obese individuals.
J Orthop Res. 2013 May;31(5):665-71. doi: 10.1002/jor.22248. Epub 2012 Dec 13.
8
In vivo measurement of ACL length and relative strain during walking.
J Biomech. 2013 Feb 1;46(3):478-83. doi: 10.1016/j.jbiomech.2012.10.031. Epub 2012 Nov 21.
9
Probing articular cartilage damage and disease by quantitative magnetic resonance imaging.
J R Soc Interface. 2013 Jan 6;10(78):20120608. doi: 10.1098/rsif.2012.0608.
10
Diurnal variations in articular cartilage thickness and strain in the human knee.
J Biomech. 2013 Feb 1;46(3):541-7. doi: 10.1016/j.jbiomech.2012.09.013. Epub 2012 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验