Suppr超能文献

真菌纤维素酶:蛋白质工程和翻译后修饰。

Fungal cellulases: protein engineering and post-translational modifications.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, People's Republic of China.

Key Laboratory of Food and Biological Engineering of Zhejiang Province, Research and Development Department, Hangzhou Wahaha Technology Co. Ltd., Hangzhou Wahaha Group Co. Ltd., Hangzhou, 310018, People's Republic of China.

出版信息

Appl Microbiol Biotechnol. 2022 Jan;106(1):1-24. doi: 10.1007/s00253-021-11723-y. Epub 2021 Dec 10.

Abstract

Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.

摘要

将木质纤维素酶解为可发酵糖以生产生物燃料和其他生物材料对于环境可持续发展和能源资源供应至关重要。然而,酶法纤维素水解存在一些问题,如复杂的纤维素酶组成、低降解效率、高生产成本和翻译后修饰(PTMs)等,所有这些都与纤维素酶的特定特性密切相关,而这些特性尚不清楚。这些问题阻碍了纤维素酶的实际应用。由于近年来计算机技术的快速发展,计算机辅助蛋白质工程得到了广泛应用,这也为纤维素酶的发展带来了新的机遇。特别是近年来,大量研究报告了计算机辅助蛋白质工程在纤维素酶开发中的应用;然而,这些文章尚未得到系统的回顾。本文主要关注真菌纤维素酶的蛋白质工程和 PTMs 方面。在本文中,系统总结了纤维素酶工程潜在位点的最新文献和分布,为进一步改善纤维素酶的性质提供了参考。关键点:

  1. 基于虚拟诱变的合理设计可以改善纤维素酶的性质。

  2. 修饰蛋白质侧链和聚糖有助于获得更优的纤维素酶。

  3. N-端谷氨酰胺-焦谷氨酸转换稳定真菌纤维素酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验