Suppr超能文献

纳米和亚微米级氧化铁颗粒在中枢神经系统中的尺寸依赖性转运模式、化学和生物转化

Size-Dependent Translocation Pattern, Chemical and Biological Transformation of Nano- and Submicron-Sized Ferric Oxide Particles in the Central Nervous System.

作者信息

Wang Bing, Wang Qiang, Chen Hanqing, Zhou Xiaoyan, Wang Hailong, Wang Huiliang, Zhang Jing, Feng Weiyue

出版信息

J Nanosci Nanotechnol. 2016 Jun;16(6):5553-61. doi: 10.1166/jnn.2016.11716.

Abstract

The present study investigated the size-dependent translocation pattern and biological fate of intranasally instilled nano- and submicron-sized Fe2O3 particles (40 nm and 280 nm) in the CNS. The particle translocation in different parts of brain at 4 h, 12 h, 24 h, 3 d, 7 d, and 30 d after intranasal instillation were quantified using ICP-MS method. A biexponential model (correlation coefficient r = 0.98-0.99) was satisfactory to describe the particokinetic translocation behavior of Fe2O3 nanoparticles in brain. We found a size-dependent translocation pattern and a time-dependent translocation mode for nano- and submicron-sized Fe2O3 nanoparticles in the olfactory bulb, which are most significant in toxic concerns of nanoparticles in the CNS. The TEM images showed particle-like substances of approximately 35-50 nm were located in the axons of olfactory neurons and in the mitochondria and lysosomes of hippocampus cells in the 40 nm-Fe2O3 exposed mice. The synchrotron-based near-edge X-ray absorption spectroscopy (XANES) was used to identify the chemical forms of the nanoparticles in brain. The XANES results indicate that the presence of chemical speciation of the Fe2O3 nanoparticle (-17%) and protein-complex like apotransferrin-Fe2O3 (-16%) in the olfactory bulb, implying that self-coating of Fe2O3 nanoparticles with transferrin occurred in brain. All the findings suggest size-sensitive manners of nano- and submicron-sized Fe2O3 particles in the brain; the smaller one possesses evident detention properties in the CNS versus the larger one.

摘要

本研究调查了经鼻滴注的纳米级和亚微米级Fe2O3颗粒(40 nm和280 nm)在中枢神经系统中的尺寸依赖性转运模式和生物学命运。采用电感耦合等离子体质谱法(ICP-MS)对滴鼻后4小时、12小时、24小时、3天、7天和30天大脑不同部位的颗粒转运进行了定量分析。双指数模型(相关系数r = 0.98 - 0.99)能够很好地描述Fe2O3纳米颗粒在大脑中的颗粒动力学转运行为。我们发现纳米级和亚微米级Fe2O3纳米颗粒在嗅球中存在尺寸依赖性转运模式和时间依赖性转运方式,这在纳米颗粒对中枢神经系统的毒性问题中最为显著。透射电镜图像显示,在暴露于40 nm - Fe2O3的小鼠中,约35 - 50 nm的颗粒状物质位于嗅神经元的轴突以及海马细胞的线粒体和溶酶体中。基于同步加速器的近边X射线吸收光谱(XANES)用于鉴定大脑中纳米颗粒的化学形态。XANES结果表明,嗅球中存在Fe2O3纳米颗粒(-17%)和类似脱铁转铁蛋白 - Fe2O3的蛋白质复合物(-16%)的化学形态,这意味着Fe2O3纳米颗粒在大脑中发生了与转铁蛋白的自包被现象。所有这些发现表明纳米级和亚微米级Fe2O3颗粒在大脑中存在尺寸敏感的行为方式;较小的颗粒在中枢神经系统中相对于较大的颗粒具有明显的滞留特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验