文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于氧化铁粒子的非侵入性成像的体内细胞示踪及其在神经和心脏疾病的基于干细胞的治疗中的特殊相关性。

In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease.

机构信息

Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.

Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.

出版信息

Mol Imaging Biol. 2020 Dec;22(6):1469-1488. doi: 10.1007/s11307-019-01440-4.


DOI:10.1007/s11307-019-01440-4
PMID:31802361
Abstract

Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.

摘要

基于干细胞的治疗是一个快速发展的领域,涉及许多临床挑战。其中一个挑战在于实施方法来跟踪实验动物模型和活体患者中的干细胞和干细胞衍生的细胞。在这里,我们概述了在心脏和神经疾病方面的细胞示踪,重点是使用铁氧化物颗粒(IOPs)在体内使用磁共振成像(MRI)进行可视化。我们讨论了可用于这种跟踪的 IOP 类型,它们的优点和局限性,用 IOP 标记细胞的方法,IOP 在分子和细胞水平上的生物学相互作用和影响,以及基于 MRI 的和相关的用于体内和组织学可视化的方法。最后,我们对基于 IOP 的心脏和神经疾病细胞示踪的文献进行了综述,包括临床前和临床研究。

相似文献

[1]
In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease.

Mol Imaging Biol. 2020-12

[2]
Evaluation of intracellular labeling with micron-sized particles of iron oxide (MPIOs) as a general tool for in vitro and in vivo tracking of human stem and progenitor cells.

Cell Transplant. 2012-3-27

[3]
Efficiently tracking of stem cells in vivo using different kinds of superparamagnetic iron oxide in swine with myocardial infarction.

Chin Med J (Engl). 2011-4

[4]
Intracellular labeling of mouse embryonic stem cell-derived neural progenitor aggregates with micron-sized particles of iron oxide.

Cytotherapy. 2015-1

[5]
Whole body MRI and fluorescent microscopy for detection of stem cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles and DiI following intramuscular and systemic delivery.

Methods Mol Biol. 2013

[6]
Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

PLoS One. 2015-4-9

[7]
Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

Stem Cells Transl Med. 2016-1

[8]
In Vivo Tracking of Human Neural Progenitor Cells in the Rat Brain Using Magnetic Resonance Imaging Is Not Enhanced by Ferritin Expression.

Cell Transplant. 2016

[9]
Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study.

Stem Cell Rev Rep. 2018-12

[10]
Tracking Superparamagnetic Iron Oxide-labeled Mesenchymal Stem Cells using MRI after Intranasal Delivery in a Traumatic Brain Injury Murine Model.

J Vis Exp. 2019-11-21

引用本文的文献

[1]
Magnetic nanoparticles influence the biological function of mesenchymal stem cells.

Sci Rep. 2025-7-30

[2]
Gold Mesoporous Silica-Coated Nanoparticles for Quantifying and Qualifying Mesenchymal Stem Cell Distribution; a Proof-of-Concept Study in Large Animals.

ACS Appl Bio Mater. 2025-2-17

[3]
Ultrasound Imaging of Macrophages Intracellularly Labelled with Biosynthetic Gas Vesicles.

Mol Imaging Biol. 2024-10

[4]
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

J Magn Reson Imaging. 2025-1

[5]
IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment.

Int J Nanomedicine. 2023

[6]
Higher Loading of Gold Nanoparticles in PAD Mesenchymal-like Stromal Cells Leads to a Decreased Exocytosis.

Cells. 2022-7-28

[7]
Ultrasound imaging tracking of mesenchymal stem cells intracellularly labeled with biosynthetic gas vesicles for treatment of rheumatoid arthritis.

Theranostics. 2022

[8]
Molecular imaging in oncology: Current impact and future directions.

CA Cancer J Clin. 2022-7

[9]
Cellular and molecular imaging for stem cell tracking in neurological diseases.

Stroke Vasc Neurol. 2021-3

[10]
Modulating endothelial adhesion and migration impacts stem cell therapies efficacy.

EBioMedicine. 2020-10

本文引用的文献

[1]
Concise Review: Heart-Derived Cell Therapy 2.0: Paracrine Strategies to Increase Therapeutic Repair of Injured Myocardium.

Stem Cells. 2018-10-15

[2]
Meta-Analysis of Cell Therapy Studies in Heart Failure and Acute Myocardial Infarction.

Circ Res. 2018-7-6

[3]
Cell-Based Therapy With Cardiosphere-Derived Cardiocytes: A New Hope for Pediatric Patients With Single Ventricle Congenital Heart Disease?

Circ Res. 2018-3-30

[4]
Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair Modulation of Macrophages.

Theranostics. 2017-9-26

[5]
Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging.

Adv Funct Mater. 2016-6-14

[6]
Cardiomyocyte Regeneration: A Consensus Statement.

Circulation. 2017-8-15

[7]
Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation.

BMC Neurosci. 2017-6-26

[8]
Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge.

Nanomaterials (Basel). 2015-12-11

[9]
Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia.

Sci Rep. 2017-1-16

[10]
Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona.

PLoS One. 2017-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索