IEEE Trans Med Imaging. 2016 Dec;35(12):2620-2630. doi: 10.1109/TMI.2016.2591921. Epub 2016 Jul 18.
This paper proposes a novel imaging biomarker of lung cancer relapse from 3-D texture analysis of CT images. Three-dimensional morphological nodular tissue properties are described in terms of 3-D Riesz-wavelets. The responses of the latter are aggregated within nodular regions by means of feature covariances, which leverage rich intra- and inter-variations of the feature space dimensions. When compared to the classical use of the average for feature aggregation, feature covariances preserve spatial co-variations between features. The obtained Riesz-covariance descriptors lie on a manifold governed by Riemannian geometry allowing geodesic measurements and differentiations. The latter property is incorporated both into a kernel for support vector machines (SVM) and a manifold-aware sparse regularized classifier. The effectiveness of the presented models is evaluated on a dataset of 110 patients with non-small cell lung carcinoma (NSCLC) and cancer recurrence information. Disease recurrence within a timeframe of 12 months could be predicted with an accuracy of 81.3-82.7%. The anatomical location of recurrence could be discriminated between local, regional and distant failure with an accuracy of 78.3-93.3%. The obtained results open novel research perspectives by revealing the importance of the nodular regions used to build the predictive models.
本文提出了一种新的基于 CT 图像三维纹理分析的肺癌复发成像生物标志物。通过三维里兹小波来描述三维形态结节组织特征。通过特征协方差来聚合结节区域内的后者的响应,从而利用特征空间维度的丰富的内部和外部变化。与经典的特征聚合平均值相比,特征协方差保留了特征之间的空间共变。所得到的里兹协方差描述符位于由黎曼几何控制的流形上,允许进行测地线测量和微分。后一种特性被纳入支持向量机(SVM)的核函数和流形感知稀疏正则化分类器中。所提出的模型的有效性在 110 名非小细胞肺癌(NSCLC)患者和癌症复发信息的数据集上进行了评估。在 12 个月的时间内,疾病复发的预测准确率为 81.3-82.7%。通过区分局部、区域和远处失败,复发的解剖位置可以以 78.3-93.3%的准确率进行区分。所获得的结果通过揭示用于构建预测模型的结节区域的重要性,开辟了新的研究前景。