Suppr超能文献

将热稳定的Cy5标记的γ-肽核酸纯化并组装成三维DNA纳米笼。

Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.

作者信息

Flory Justin D, Johnson Trey, Simmons Chad D, Lin Su, Ghirlanda Giovanna, Fromme Petra

出版信息

Artif DNA PNA XNA. 2014 Dec 15;5(3):e992181. doi: 10.4161/1949095X.2014.992181.

Abstract

PNA is hybrid molecule ideally suited for bridging the functional landscape of polypeptides with the structural diversity that can be engineered with DNA nanostructures. However, PNA can be more challenging to work with in aqueous solvents due to its hydrophobic nature. A solution phase method using strain promoted, copper free click chemistry was developed to conjugate the fluorescent dye Cy5 to 2 bifunctional PNA strands as a first step toward building cyclic PNA-polypeptides that can be arranged within 3D DNA nanoscaffolds. A 3D DNA nanocage was designed with binding sites for the 2 fluorescently labeled PNA strands in close proximity to mimic protein active sites. Denaturing polyacrylamide gel electrophoresis (PAGE) is introduced as an efficient method for purifying charged, dye-labeled NA conjugates from large excesses of unreacted dye and unreacted, neutral PNA. Elution from the gel in water was monitored by fluorescence and found to be more efficient for the more soluble PNA strand. Native PAGE shows that both PNA strands hybridize to their intended binding sites within the DNA nanocage. Förster resonance energy transfer (FRET) with a Cy3 labeled DNA nanocage was used to determine the dissociation temperature of one PNA-Cy5 conjugate to be near 50C. Steady-state and time resolved fluorescence was used to investigate the dye orientation and interactions within the various complexes. Bifunctional, thermostable PNA molecules are intriguing candidates for controlling the assembly and orientation of peptides within small DNA nanocages for mimicking protein catalytic sites.

摘要

肽核酸(PNA)是一种理想的杂交分子,非常适合将多肽的功能领域与可通过DNA纳米结构设计的结构多样性联系起来。然而,由于其疏水性,PNA在水性溶剂中使用起来可能更具挑战性。开发了一种使用应变促进的无铜点击化学的溶液相方法,将荧光染料Cy5与2条双功能PNA链共轭,这是构建可排列在3D DNA纳米支架内的环状PNA-多肽的第一步。设计了一种3D DNA纳米笼,其具有靠近模拟蛋白质活性位点的2条荧光标记PNA链的结合位点。变性聚丙烯酰胺凝胶电泳(PAGE)被引入作为一种从大量未反应的染料和未反应的中性PNA中纯化带电的、染料标记的核酸共轭物的有效方法。通过荧光监测从凝胶中在水中的洗脱,发现对于更易溶的PNA链更有效。非变性PAGE表明两条PNA链都与DNA纳米笼内它们预期的结合位点杂交。使用与Cy3标记的DNA纳米笼的荧光共振能量转移(FRET)来确定一种PNA-Cy5共轭物的解离温度接近50℃。稳态和时间分辨荧光用于研究各种复合物内染料的取向和相互作用。双功能、热稳定的PNA分子是控制小DNA纳米笼内肽的组装和取向以模拟蛋白质催化位点的有趣候选物。

相似文献

1
Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.
Artif DNA PNA XNA. 2014 Dec 15;5(3):e992181. doi: 10.4161/1949095X.2014.992181.
2
Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage.
Artif DNA PNA XNA. 2014;5(3):1-8. doi: 10.4161/1949095X.2014.992181.
3
Low temperature assembly of functional 3D DNA-PNA-protein complexes.
J Am Chem Soc. 2014 Jun 11;136(23):8283-95. doi: 10.1021/ja501228c. Epub 2014 May 28.
4
PNA-peptide assembly in a 3D DNA nanocage at room temperature.
J Am Chem Soc. 2013 May 8;135(18):6985-93. doi: 10.1021/ja400762c. Epub 2013 Apr 12.
5
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer.
Bioconjug Chem. 2014 Oct 15;25(10):1820-8. doi: 10.1021/bc500319p. Epub 2014 Sep 23.
6
Strategy for Internal Labeling of Large RNAs with Minimal Perturbation by Using Fluorescent PNA.
Chembiochem. 2015 Jun 15;16(9):1302-6. doi: 10.1002/cbic.201500180. Epub 2015 May 18.
7
PNA/dsDNA complexes: site specific binding and dsDNA biosensor applications.
J Am Chem Soc. 2006 Jul 5;128(26):8484-92. doi: 10.1021/ja060069s.
8
A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization.
Analyst. 2015 Jan 21;140(2):434-9. doi: 10.1039/c4an01738b.
10
Metal-enhanced fluorescence of conjugated polyelectrolytes with self-assembled silver nanoparticle platforms.
J Phys Chem B. 2011 Apr 7;115(13):3281-8. doi: 10.1021/jp1092702. Epub 2011 Mar 10.

引用本文的文献

本文引用的文献

1
Low temperature assembly of functional 3D DNA-PNA-protein complexes.
J Am Chem Soc. 2014 Jun 11;136(23):8283-95. doi: 10.1021/ja501228c. Epub 2014 May 28.
2
NextGen protein design.
Biochem Soc Trans. 2013 Oct;41(5):1131-1136. doi: 10.1042/BST20130112.
3
Just (protein) engineering?
Curr Opin Struct Biol. 2013 Aug;23(4):569-70. doi: 10.1016/j.sbi.2013.07.003. Epub 2013 Jul 22.
4
The enabled state of DNA nanotechnology.
Curr Opin Biotechnol. 2013 Aug;24(4):555-61. doi: 10.1016/j.copbio.2013.02.001. Epub 2013 Apr 6.
5
PNA-peptide assembly in a 3D DNA nanocage at room temperature.
J Am Chem Soc. 2013 May 8;135(18):6985-93. doi: 10.1021/ja400762c. Epub 2013 Apr 12.
6
Recent advances in chemical modification of Peptide nucleic acids.
J Nucleic Acids. 2012;2012:518162. doi: 10.1155/2012/518162. Epub 2012 Sep 6.
8
Challenges and opportunities for structural DNA nanotechnology.
Nat Nanotechnol. 2011 Nov 6;6(12):763-72. doi: 10.1038/nnano.2011.187.
9
Functionalization of DNA nanostructures with proteins.
Chem Soc Rev. 2011 Dec;40(12):5910-21. doi: 10.1039/c1cs15212b. Epub 2011 Oct 5.
10
Strain-promoted copper-free "click" chemistry for 18F radiolabeling of bombesin.
Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11117-20. doi: 10.1002/anie.201105547. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验