Suppr超能文献

低温下功能性 3D DNA-PNA-蛋白质复合物的组装。

Low temperature assembly of functional 3D DNA-PNA-protein complexes.

机构信息

Department of Chemistry and Biochemistry, ‡Center for Bio-Inspired Solar Fuel Production, and §Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States.

出版信息

J Am Chem Soc. 2014 Jun 11;136(23):8283-95. doi: 10.1021/ja501228c. Epub 2014 May 28.

Abstract

Proteins have evolved to carry out nearly all the work required of living organisms within complex inter- and intracellular environments. However, systematically investigating the range of interactions experienced by a protein that influence its function remains challenging. DNA nanostructures are emerging as a convenient method to arrange a broad range of guest molecules. However, flexible methods are needed for arranging proteins in more biologically relevant 3D geometries under mild conditions that preserve protein function. Here we demonstrate how peptide nucleic acid (PNA) can be used to control the assembly of cytochrome c (12.5 kDa, pI 10.5) and azurin (13.9 kDa, pI 5.7) proteins into separate 3D DNA nanocages, in a process that maintains protein function. Toehold-mediated DNA strand displacement is introduced as a method to purify PNA-protein conjugates. The PNA-proteins were assembled within 2 min at room temperature and within 4 min at 11 °C, and hybridize with even greater efficiency than PNA conjugated to a short peptide. Gel electrophoresis and steady state and time-resolved fluorescence spectroscopy were used to investigate the effect of protein surface charge on its interaction with the negatively charged DNA nanocage. These data were used to generate a model of the DNA-PNA-protein complexes that show the negatively charged azurin protein repelled away from the DNA nanocage while the positively charged cytochrome c protein remains within and closely interacts with the DNA nanocage. When conjugated to PNA and incorporated into the DNA nanocage, the cytochrome c secondary structure and catalytic activity were maintained, and its redox potential was reduced modestly by 20 mV possibly due to neutralization of some positive surface charges. This work demonstrates a flexible new approach for using 3D nucleic acid (PNA-DNA) nanostructures to control the assembly of functional proteins, and facilitates further investigation of protein interactions as well as engineer more elaborate 3D protein complexes.

摘要

蛋白质已经进化到可以在复杂的细胞内外环境中执行几乎所有生命活动所需的工作。然而,系统地研究影响蛋白质功能的蛋白质相互作用范围仍然具有挑战性。DNA 纳米结构作为一种方便的方法来排列广泛的客体分子而出现。然而,需要灵活的方法在更具生物学相关性的 3D 几何形状下排列蛋白质,条件温和且能保持蛋白质功能。在这里,我们展示了如何使用肽核酸(PNA)来控制细胞色素 c(12.5 kDa,pI 10.5)和天青蛋白(13.9 kDa,pI 5.7)蛋白分别组装到独立的 3D DNA 纳米笼中,这个过程保持了蛋白质的功能。引入链置换作为一种方法来纯化 PNA-蛋白缀合物。PNA-蛋白在室温下 2 分钟内,在 11°C 下 4 分钟内组装,并且与短肽偶联的 PNA 杂交效率更高。凝胶电泳和稳态和时间分辨荧光光谱用于研究蛋白质表面电荷对其与带负电荷的 DNA 纳米笼相互作用的影响。这些数据用于生成 DNA-PNA-蛋白复合物的模型,该模型显示带负电荷的天青蛋白被排斥远离 DNA 纳米笼,而带正电荷的细胞色素 c 蛋白则留在纳米笼内并与 DNA 纳米笼紧密相互作用。当与 PNA 偶联并纳入 DNA 纳米笼中时,细胞色素 c 的二级结构和催化活性得以保持,其氧化还原电位适度降低了 20 mV,可能是由于一些正表面电荷的中和。这项工作展示了一种灵活的新方法,用于使用 3D 核酸(PNA-DNA)纳米结构来控制功能蛋白的组装,并促进了对蛋白质相互作用的进一步研究以及构建更复杂的 3D 蛋白复合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验