Center for Data Analytics and Biomedical Informatics, Philadelphia, PA.
Weill Cornell Medicine, New York, NY.
AMIA Annu Symp Proc. 2023 Apr 29;2022:512-521. eCollection 2022.
A hospital readmission risk prediction tool for patients with diabetes based on electronic health record (EHR) data is needed. The optimal modeling approach, however, is unclear. In 2,836,569 encounters of 36,641 diabetes patients, deep learning (DL) long short-term memory (LSTM) models predicting unplanned, all-cause, 30-day readmission were developed and compared to several traditional models. Models used EHR data defined by a Common Data Model. The LSTM model Area Under the Receiver Operating Characteristic Curve (AUROC) was significantly greater than that of the next best traditional model [LSTM 0.79 vs Random Forest (RF) 0.72, p<0.0001]. Experiments showed that performance of the LSTM models increased as prior encounter number increased up to 30 encounters. An LSTM model with 16 selected laboratory tests yielded equivalent performance to a model with all 981 laboratory tests. This new DL model may provide the basis for a more useful readmission risk prediction tool for diabetes patients.
需要一种基于电子健康记录 (EHR) 数据的糖尿病患者住院再入院风险预测工具。然而,最佳建模方法尚不清楚。在 36641 名糖尿病患者的 2836569 次就诊中,开发了深度学习 (DL) 长短时记忆 (LSTM) 模型来预测无计划的、全因的 30 天再入院,并将其与几种传统模型进行了比较。模型使用由通用数据模型定义的 EHR 数据。LSTM 模型的受试者工作特征曲线下面积 (AUROC) 明显大于下一个最佳传统模型[LSTM 0.79 与随机森林 (RF) 0.72,p<0.0001]。实验表明,随着之前就诊次数的增加,LSTM 模型的性能也随之提高,最多可达 30 次就诊。一个具有 16 个选定实验室测试的 LSTM 模型与具有所有 981 个实验室测试的模型具有等效性能。这种新的 DL 模型可能为糖尿病患者提供更有用的再入院风险预测工具的基础。