Suppr超能文献

Rm3的结构与生化特性研究,Rm3是一种从功能宏基因组学研究中鉴定出的B3类金属β-内酰胺酶

Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study.

作者信息

Salimraj Ramya, Zhang Lihong, Hinchliffe Philip, Wellington Elizabeth M H, Brem Jürgen, Schofield Christopher J, Gaze William H, Spencer James

机构信息

School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.

School of Life Sciences, University of Warwick, Coventry, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2016 Sep 23;60(10):5828-40. doi: 10.1128/AAC.00750-16. Print 2016 Oct.

Abstract

β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance.

摘要

β-内酰胺酶的产生日益威胁到β-内酰胺类药物的有效性,而β-内酰胺类药物仍是抗微生物化疗的主要药物。新的活性通过先前已知的β-内酰胺酶的突变以及从环境库中的转移而出现。金属β-内酰胺酶(MBLs)的传播构成了一项特殊挑战,因为除了其他β-内酰胺类药物外,它们通常具有包括碳青霉烯类在内的广谱活性。越来越多的基因组和宏基因组研究揭示了环境中推定的MBLs的分布,但在大多数情况下,它们对临床相关β-内酰胺类药物的活性以及因此可被视为耐药库的程度仍未得到表征。在此,我们对通过对高生物杀灭剂暴露环境进行功能宏基因组采样鉴定出的一个此类基因blaRm3的产物进行了表征。blaRm3编码一种B3亚类MBL,当在重组大肠杆菌菌株中表达时,它被转运到细菌周质中,并水解临床使用的青霉素、头孢菌素和碳青霉烯类药物,但其效率受到高Km值的限制。Rm3晶体结构揭示了MBL超家族的αβ/βα折叠,与其他染色体酶(L1或FEZ-1)相比,它与转移的B3 MBLs(AIM-1和SMB-1)中的折叠更为相似。一个双核锌位点位于一个深通道中,该通道部分由相对延伸的N末端界定。结构比较表明,N末端施加的空间限制可能会限制其对β-内酰胺类药物的亲和力。序列比较在许多其他环境样本和物种中鉴定出了类似Rm3的MBLs。我们的数据表明,类似Rm3的酶代表了一组分布广泛的独特B3 MBLs,可被视为β-内酰胺耐药性决定因素的环境库。

相似文献

1
Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5828-40. doi: 10.1128/AAC.00750-16. Print 2016 Oct.
2
Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):6013-22. doi: 10.1128/AAC.01067-16. Print 2016 Oct.
5
Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157.
Antimicrob Agents Chemother. 2012 Aug;56(8):4341-53. doi: 10.1128/AAC.00448-12. Epub 2012 Jun 4.
6
PNGM-1, a novel subclass B3 metallo-β-lactamase from a deep-sea sediment metagenome.
J Glob Antimicrob Resist. 2018 Sep;14:302-305. doi: 10.1016/j.jgar.2018.05.021. Epub 2018 May 26.
8
Cyclic Boronates Inhibit All Classes of β-Lactamases.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02260-16. Print 2017 Apr.

引用本文的文献

1
Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues.
Antibiotics (Basel). 2023 Dec 16;12(12):1746. doi: 10.3390/antibiotics12121746.
2
Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases.
Front Microbiol. 2022 Jan 13;12:752535. doi: 10.3389/fmicb.2021.752535. eCollection 2021.
3
Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid.
Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0093621. doi: 10.1128/AAC.00936-21. Epub 2021 Jul 26.
4
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
7
Molecular modeling and QM/MM calculation clarify the catalytic mechanism of β-lactamase N1.
J Mol Model. 2019 Apr 13;25(5):118. doi: 10.1007/s00894-019-4001-z.
8
The novel metallo-β-lactamase PNGM-1 from a deep-sea sediment metagenome: crystallization and X-ray crystallographic analysis.
Acta Crystallogr F Struct Biol Commun. 2018 Oct 1;74(Pt 10):644-649. doi: 10.1107/S2053230X18012268. Epub 2018 Sep 19.
9
Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors.
Appl Environ Microbiol. 2018 Aug 31;84(18). doi: 10.1128/AEM.00698-18. Print 2018 Sep 15.

本文引用的文献

2
Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711.
Genome Announc. 2015 Jun 18;3(3):e00689-15. doi: 10.1128/genomeA.00689-15.
3
Survey of metallo-β-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008-11.
J Antimicrob Chemother. 2015 Jul;70(7):1981-8. doi: 10.1093/jac/dkv055. Epub 2015 Mar 10.
5
Bacterial phylogeny structures soil resistomes across habitats.
Nature. 2014 May 29;509(7502):612-6. doi: 10.1038/nature13377. Epub 2014 May 21.
6
Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria.
Biomed Res Int. 2014;2014:249856. doi: 10.1155/2014/249856. Epub 2014 Mar 26.
7
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
8
Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.
Vet Microbiol. 2014 Jul 16;171(3-4):441-7. doi: 10.1016/j.vetmic.2014.02.017. Epub 2014 Feb 16.
9
Influence of humans on evolution and mobilization of environmental antibiotic resistome.
Emerg Infect Dis. 2013 Jul;19(7). doi: 10.3201/eid1907.120871.
10
CTX-M-type β-lactamases: a successful story of antibiotic resistance.
Int J Med Microbiol. 2013 Aug;303(6-7):305-17. doi: 10.1016/j.ijmm.2013.02.008. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验