Salimraj Ramya, Zhang Lihong, Hinchliffe Philip, Wellington Elizabeth M H, Brem Jürgen, Schofield Christopher J, Gaze William H, Spencer James
School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
School of Life Sciences, University of Warwick, Coventry, United Kingdom.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5828-40. doi: 10.1128/AAC.00750-16. Print 2016 Oct.
β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance.
β-内酰胺酶的产生日益威胁到β-内酰胺类药物的有效性,而β-内酰胺类药物仍是抗微生物化疗的主要药物。新的活性通过先前已知的β-内酰胺酶的突变以及从环境库中的转移而出现。金属β-内酰胺酶(MBLs)的传播构成了一项特殊挑战,因为除了其他β-内酰胺类药物外,它们通常具有包括碳青霉烯类在内的广谱活性。越来越多的基因组和宏基因组研究揭示了环境中推定的MBLs的分布,但在大多数情况下,它们对临床相关β-内酰胺类药物的活性以及因此可被视为耐药库的程度仍未得到表征。在此,我们对通过对高生物杀灭剂暴露环境进行功能宏基因组采样鉴定出的一个此类基因blaRm3的产物进行了表征。blaRm3编码一种B3亚类MBL,当在重组大肠杆菌菌株中表达时,它被转运到细菌周质中,并水解临床使用的青霉素、头孢菌素和碳青霉烯类药物,但其效率受到高Km值的限制。Rm3晶体结构揭示了MBL超家族的αβ/βα折叠,与其他染色体酶(L1或FEZ-1)相比,它与转移的B3 MBLs(AIM-1和SMB-1)中的折叠更为相似。一个双核锌位点位于一个深通道中,该通道部分由相对延伸的N末端界定。结构比较表明,N末端施加的空间限制可能会限制其对β-内酰胺类药物的亲和力。序列比较在许多其他环境样本和物种中鉴定出了类似Rm3的MBLs。我们的数据表明,类似Rm3的酶代表了一组分布广泛的独特B3 MBLs,可被视为β-内酰胺耐药性决定因素的环境库。