Suppr超能文献

4-氨基-2-巯基苯甲酸作为一种强效的 B3 型金属β-内酰胺酶特异性抑制剂,可用于区分金属β-内酰胺酶亚型。

4-Amino-2-Sulfanylbenzoic Acid as a Potent Subclass B3 Metallo-β-Lactamase-Specific Inhibitor Applicable for Distinguishing Metallo-β-Lactamase Subclasses.

机构信息

Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan

Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.

出版信息

Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.01197-19. Print 2019 Oct.

Abstract

The number of cases of infection with carbapenem-resistant (CRE) has been increasing and has become a major clinical and public health concern. Production of metallo-β-lactamases (MBLs) is one of the principal carbapenem resistance mechanisms in CRE. Therefore, developing MBL inhibitors is a promising strategy to overcome the problems of carbapenem resistance conferred by MBLs. To date, the development and evaluation of MBL inhibitors have focused on subclass B1 MBLs but not on B3 MBLs. In the present study, we searched for B3 MBL (specifically, SMB-1) inhibitors and found thiosalicylic acid (TSA) to be a potent inhibitor of B3 SMB-1 MBL (50% inhibitory concentration [IC], 0.95 μM). TSA inhibited the purified SMB-1 to a considerable degree but was not active against cells producing SMB-1, as the meropenem (MEM) MIC for the SMB-1 producer was only slightly reduced with TSA. We then introduced a primary amine to TSA and synthesized 4-amino-2-sulfanylbenzoic acid (ASB), which substantially reduced the MEM MICs for SMB-1 producers. X-ray crystallographic analyses revealed that ASB binds to the two zinc ions, Ser221, and Thr223 at the active site of SMB-1. These are ubiquitously conserved residues across clinically relevant B3 MBLs. ASB also significantly inhibited other B3 MBLs, including AIM-1, LMB-1, and L1. Therefore, the characterization of ASB provides a starting point for the development of optimum B3 MBL inhibitors.

摘要

耐碳青霉烯肠杆菌科 (CRE) 的感染病例数量不断增加,已成为主要的临床和公共卫生关注点。金属β-内酰胺酶 (MBLs) 的产生是 CRE 中主要的碳青霉烯耐药机制之一。因此,开发 MBL 抑制剂是克服 MBL 引起的碳青霉烯耐药问题的一种有前途的策略。迄今为止,MBL 抑制剂的开发和评估主要集中在 B1 亚类 MBL 上,而不是 B3 MBL。在本研究中,我们搜索了 B3 MBL(具体为 SMB-1)抑制剂,发现硫代水杨酸 (TSA) 是 B3 SMB-1 MBL 的有效抑制剂(半抑制浓度 [IC]50 为 0.95 μM)。TSA 对纯化的 SMB-1 有相当程度的抑制作用,但对产生 SMB-1 的细胞没有活性,因为 TSA 仅略微降低了产 SMB-1 细胞对美罗培南 (MEM) 的 MIC。然后,我们在 TSA 上引入伯胺并合成了 4-氨基-2-巯基苯甲酸 (ASB),这大大降低了 SMB-1 产生菌的 MEM MIC 值。X 射线晶体学分析表明,ASB 与 SMB-1 活性位点的两个锌离子、Ser221 和 Thr223 结合。这些残基在临床上相关的 B3 MBL 中普遍保守。ASB 还显著抑制了其他 B3 MBL,包括 AIM-1、LMB-1 和 L1。因此,ASB 的特性分析为开发最佳 B3 MBL 抑制剂提供了起点。

相似文献

6
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4274-82. doi: 10.1128/AAC.03108-15. Print 2016 Jul.
7
Comparing the activity of broad-spectrum beta-lactams in combination with aminoglycosides against VIM-producing .
Microbiol Spectr. 2024 Oct 3;12(10):e0387623. doi: 10.1128/spectrum.03876-23. Epub 2024 Aug 20.
8
Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in .
Microbiol Spectr. 2024 Mar 5;12(3):e0234423. doi: 10.1128/spectrum.02344-23. Epub 2024 Feb 5.
9
In vitro evaluation of metal chelators as potential metallo- β -lactamase inhibitors.
J Appl Microbiol. 2016 Apr;120(4):860-7. doi: 10.1111/jam.13085. Epub 2016 Mar 11.
10

引用本文的文献

1
Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in .
Microbiol Spectr. 2024 Mar 5;12(3):e0234423. doi: 10.1128/spectrum.02344-23. Epub 2024 Feb 5.
3
Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach.
J Chem Inf Model. 2023 Aug 28;63(16):5204-5219. doi: 10.1021/acs.jcim.3c00558. Epub 2023 Aug 9.
5
Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants.
Antimicrob Agents Chemother. 2021 Mar 18;65(4). doi: 10.1128/AAC.01714-20.

本文引用的文献

1
LMB-1, a novel family of class B3 MBLs from an isolate of Enterobacter cloacae.
J Antimicrob Chemother. 2018 Sep 1;73(9):2331-2335. doi: 10.1093/jac/dky215.
2
An update on β-lactamase inhibitor discovery and development.
Drug Resist Updat. 2018 Jan;36:13-29. doi: 10.1016/j.drup.2017.11.002. Epub 2017 Nov 7.
3
Inhibitors of metallo-β-lactamases.
Curr Opin Microbiol. 2017 Oct;39:96-105. doi: 10.1016/j.mib.2017.10.026. Epub 2017 Nov 16.
4
Thiol-Containing Metallo-β-Lactamase Inhibitors Resensitize Resistant Gram-Negative Bacteria to Meropenem.
ACS Infect Dis. 2017 Oct 13;3(10):711-717. doi: 10.1021/acsinfecdis.7b00094. Epub 2017 Aug 28.
5
Predictive compound accumulation rules yield a broad-spectrum antibiotic.
Nature. 2017 May 18;545(7654):299-304. doi: 10.1038/nature22308. Epub 2017 May 10.
6
The rapid spread of carbapenem-resistant Enterobacteriaceae.
Drug Resist Updat. 2016 Nov;29:30-46. doi: 10.1016/j.drup.2016.09.002. Epub 2016 Sep 19.
7
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4274-82. doi: 10.1128/AAC.03108-15. Print 2016 Jul.
8
Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers.
Antimicrob Agents Chemother. 2015 Oct 19;60(1):142-50. doi: 10.1128/AAC.01335-15. Print 2016 Jan.
9
Overcoming differences: The catalytic mechanism of metallo-β-lactamases.
FEBS Lett. 2015 Nov 14;589(22):3419-32. doi: 10.1016/j.febslet.2015.08.015. Epub 2015 Aug 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验