Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
Sci Rep. 2016 Jul 20;6:29896. doi: 10.1038/srep29896.
The transcription factor NF-κB is central to numerous physiologic processes including bone development, and its activation is controlled by IKKγ (also called NEMO), the regulatory subunit of IKK complex. NEMO is X-linked, and mutations in this gene result in Incontinentia Pigmenti in human hemizygous females. In mice, global deficiency causes embryonic lethality. In addition, certain point mutations in the NEMO (IKBKG) human gene manifest skeletal defects implicating NEMO in the regulation of bone homeostasis. To specifically investigate such role, we conditionally deleted Nemo from osteoclast and myeloid progenitors. Morphometric, histologic, and molecular analyses demonstrate that myeloid NEMO deletion causes osteopetrosis in mice. Mechanistically, NEMO deficiency hampered activation of IKK complex in osteoclast precursors, causing arrest of osteoclastogenesis and apoptosis. Interestingly, inhibiting apoptosis by genetic ablation of TNFr1 significantly increased cell survival, but failed to rescue osteoclastogenesis or reverse osteopetrosis. Based on this observation, we analyzed the expression of different regulators of osteoclastogenesis and discovered that NEMO deletion leads to increased RBPJ expression, resulting in a decrease of Blimp1 expression. Consequently, expression of IRF8 and Bcl6 which are targets of Blimp1 and potent osteoclastogenic transcriptional repressors, is increased. Thus, NEMO governs survival and osteoclast differentiation programs through serial regulation of multiple transcription factors.
转录因子 NF-κB 是许多生理过程的核心,包括骨骼发育,其激活受 IKKγ(也称为 NEMO)的控制,IKK 复合物的调节亚基。NEMO 是 X 连锁的,该基因的突变导致人类半合子女性的色素失禁症。在小鼠中,全局缺陷导致胚胎致死。此外,NEMO(IKBKG)人类基因中的某些点突变表现出骨骼缺陷,表明 NEMO 参与了骨稳态的调节。为了专门研究这种作用,我们条件性地从破骨细胞和成髓细胞祖细胞中删除了 Nemo。形态计量学、组织学和分子分析表明,髓样 NEMO 缺失导致小鼠发生骨质增生。从机制上讲,NEMO 缺乏阻碍了破骨细胞前体中 IKK 复合物的激活,导致破骨细胞生成停滞和细胞凋亡。有趣的是,通过 TNFr1 的基因消融抑制细胞凋亡显着增加了细胞存活,但未能挽救破骨细胞生成或逆转骨质增生。基于这一观察结果,我们分析了破骨细胞生成的不同调节剂的表达,并发现 NEMO 缺失导致 RBPJ 表达增加,导致 Blimp1 表达减少。因此,IRF8 和 Bcl6 的表达增加,它们是 Blimp1 的靶标,也是有效的破骨细胞生成转录抑制因子。因此,NEMO 通过对多个转录因子的连续调节来控制存活和破骨细胞分化程序。