1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.
2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia.
Stem Cells Dev. 2019 Jul 1;28(13):846-859. doi: 10.1089/scd.2019.0045. Epub 2019 May 20.
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
早期影响许多无法治愈的线粒体疾病的分子和发育事件尚未完全了解,需要生成相关的患者特异性和疾病特异性干细胞模型。在这项研究中,我们专注于一种非病毒且无整合的重编程方法,该方法可用于衍生出特定于 Leigh 综合征(LS)的临床级诱导多能干细胞(iPSC),LS 是一种致命的婴儿神经退行性线粒体疾病。致死的原因可能是由于存在大量突变型线粒体 DNA(mtDNA)或呼吸水平下降,从而影响了能量密集型组织中的早期分子和发育事件。LS 患者成纤维细胞(本研究中指定为 LS1)携带高比例的突变 T8993G mtDNA,使用组合的 mRNA-miRNA 非病毒方法对其进行重编程以生成人类 iPSC(hiPSC)。使用免疫细胞化学和基因表达谱方法评估 LS1-hiPSC 的自我更新,类胚体(EB)形成和分化潜能。使用 Sanger 测序和下一代测序方法检测 LS1-hiPSC 和分化衍生物中的突变并量化突变 mtDNA 的百分比。重编程的 LS-hiPSC 表达多能干细胞标志物,包括转录因子 OCT4、NANOG 和 SOX2 以及细胞表面标志物 SSEA4、TRA-1-60 和 TRA-1-81,在 RNA 和蛋白质水平上。LS1-hiPSC 还表现出自我更新和多能性分化为所有三个胚胎胚层的能力。EB 分析表明,携带高比例突变 mtDNA 的细胞分化潜能受损。下一代测序分析证实了患者成纤维细胞及其重编程和分化衍生物中存在大量 T8993G 突变 mtDNA。这些结果首次代表了从携带大量突变 mtDNA 的 LS 患者成纤维细胞中衍生和表征的稳定非病毒 hiPSC 系。这些结果对于理解疾病起源和为患有线粒体疾病的患者开发个性化治疗方法是重要的步骤。