Suppr超能文献

Prehension in the pigeon. II. Kinematic analysis.

作者信息

Bermejo R, Zeigler H P

机构信息

Biopsychology Program, Hunter College (CUNY), NY.

出版信息

Exp Brain Res. 1989;75(3):577-85. doi: 10.1007/BF00249909.

Abstract

During eating, the pigeon's jaw functions as a prehensile organ, i.e., as an effector organ involved in the grasping and manipulation of objects. The preceding paper provided a descriptive account of the jaw opening movements associated with each phase of the eating behavior sequence. For two of these movements, Grasping and Mandibulation, the amplitude of jaw opening is adjusted to pellet size. In the present study a kinematic analysis of these movements was carried out to clarify the motor control mechanisms mediating these adjustments. The analysis was carried out within the conceptual framework provided by a "pulse-control" model of targeted movement. For each of the movements the extent to which opening amplitude, its first and second derivatives and its rise time are scaled to pellet size was determined. Relationships among these kinematic variables were then examined in order to distinguish between "pulse-height" and "pulse-width" strategies. In addition, the possibility that "corrective adjustments" to the trajectory are made during its execution was also explored using a multiple regression analysis developed by Gordon and Ghez (1987a, b). For both movements, peak opening amplitude, acceleration and velocity are scaled to pellet size and these variables account for most of the variance in opening amplitude. The kinematic analysis suggests that critical parameters of the trajectory are determined ("programmed") prior to its initiation. Moreover, pigeons, like cats and humans, appear to utilize a "pulse-height" strategy for the control of amplitude scaling during targeted movements.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验