Kumano Takuto, Fujiki Etsuko, Hashimoto Yoshiteru, Kobayashi Michihiko
Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9087-92. doi: 10.1073/pnas.1605050113. Epub 2016 Jul 21.
Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.
芝麻素是芝麻油中发现的主要木脂素之一。虽然已鉴定出芝麻素的一些微生物代谢产物,但芝麻素的代谢途径在酶和基因水平上仍未得到表征。在此,我们分离出以芝麻素作为唯一碳源生长的微生物。一种表现出显著芝麻素降解活性的微生物被鉴定为中华单胞菌22号菌株。从该菌株中纯化并表征了一种名为SesA的芝麻素代谢酶。SesA催化芝麻素或芝麻素单儿茶酚的亚甲基基团转移至四氢叶酸(THF)并伴随环裂解,生成芝麻素单儿茶酚或二儿茶酚以及5,10-亚甲基四氢叶酸。SesA的动力学参数测定如下:芝麻素的Km = 0.032 ± 0.005 mM,Vmax = 9.3 ± 0.4(μmol·min⁻¹·mg⁻¹),kcat = 7.9 ± 0.3 s⁻¹。接下来,我们研究了底物特异性。SesA对(+)-表芝麻素、(-)-细辛脂素、芝麻素醇、(+)-芝麻林素和胡椒碱也表现出酶活性。对22号菌株的生长研究以及蛋白质免疫印迹分析表明,SesA的形成可被芝麻素诱导。SesA推导的氨基酸序列与甘氨酸裂解T蛋白(GcvTs)家族蛋白质的整体序列相似性较弱,GcvTs在大多数细菌、古细菌和所有真核生物中催化甘氨酸降解。在GcvT家族蛋白质中,只有SesA催化伴随环裂解反应的C1转移至THF。此外,在革兰氏阳性菌和革兰氏阴性菌中均发现了SesA同源基因。我们的研究结果为微生物芝麻素代谢以及GcvT家族蛋白质的功能提供了新的见解。