Kallolimath Somanath, Castilho Alexandra, Strasser Richard, Grünwald-Gruber Clemens, Altmann Friedrich, Strubl Sebastian, Galuska Christina Elisabeth, Zlatina Kristina, Galuska Sebastian Peter, Werner Stefan, Thiesler Hauke, Werneburg Sebastian, Hildebrandt Herbert, Gerardy-Schahn Rita, Steinkellner Herta
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9498-503. doi: 10.1073/pnas.1604371113. Epub 2016 Jul 21.
Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.
唾液酸(Sias)是蛋白质连接聚糖丰富的末端修饰。与其他单糖相比,唾液酸的一个独特特征是形成线性同聚物,其最复杂的形式是聚唾液酸(polySia)。唾液酸和聚唾液酸介导多种生物学功能,具有巨大的治疗应用潜力。然而,由于巨大的结构多样性,在产生确定的蛋白质唾液酸化方面存在技术障碍,这使得对其进行精确研究成为一项挑战。在此,我们描述了一种基于植物的表达平台,该平台能够在体内可控地合成具有不同连接方式和聚合度(DP)的唾液酸化结构。该方法依赖于稳定转化的植物与瞬时表达模块的组合。通过将携带人类唾液酸化途径的多基因载体引入糖基化破坏的突变体中,产生了以α2,6 -或α2,3 -连接方式对糖蛋白进行唾液酸化的转基因植物。此外,通过瞬时共表达人类α2,8 -聚唾液酸转移酶,在这些植物中合成了聚合度>40的聚唾液酸结构。重要的是,基于细胞的细胞毒性测定和小胶质细胞激活抑制实验证明,植物来源的聚唾液酸具有功能活性。这种途径工程方法能够对确定的唾液酸化进行实验研究,并有助于合理设计具有优化生物技术功能的聚糖结构。