Suppr超能文献

植物中复杂蛋白质唾液酸化的工程改造。

Engineering of complex protein sialylation in plants.

作者信息

Kallolimath Somanath, Castilho Alexandra, Strasser Richard, Grünwald-Gruber Clemens, Altmann Friedrich, Strubl Sebastian, Galuska Christina Elisabeth, Zlatina Kristina, Galuska Sebastian Peter, Werner Stefan, Thiesler Hauke, Werneburg Sebastian, Hildebrandt Herbert, Gerardy-Schahn Rita, Steinkellner Herta

机构信息

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;

Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;

出版信息

Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9498-503. doi: 10.1073/pnas.1604371113. Epub 2016 Jul 21.

Abstract

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

摘要

唾液酸(Sias)是蛋白质连接聚糖丰富的末端修饰。与其他单糖相比,唾液酸的一个独特特征是形成线性同聚物,其最复杂的形式是聚唾液酸(polySia)。唾液酸和聚唾液酸介导多种生物学功能,具有巨大的治疗应用潜力。然而,由于巨大的结构多样性,在产生确定的蛋白质唾液酸化方面存在技术障碍,这使得对其进行精确研究成为一项挑战。在此,我们描述了一种基于植物的表达平台,该平台能够在体内可控地合成具有不同连接方式和聚合度(DP)的唾液酸化结构。该方法依赖于稳定转化的植物与瞬时表达模块的组合。通过将携带人类唾液酸化途径的多基因载体引入糖基化破坏的突变体中,产生了以α2,6 -或α2,3 -连接方式对糖蛋白进行唾液酸化的转基因植物。此外,通过瞬时共表达人类α2,8 -聚唾液酸转移酶,在这些植物中合成了聚合度>40的聚唾液酸结构。重要的是,基于细胞的细胞毒性测定和小胶质细胞激活抑制实验证明,植物来源的聚唾液酸具有功能活性。这种途径工程方法能够对确定的唾液酸化进行实验研究,并有助于合理设计具有优化生物技术功能的聚糖结构。

相似文献

1
Engineering of complex protein sialylation in plants.植物中复杂蛋白质唾液酸化的工程改造。
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9498-503. doi: 10.1073/pnas.1604371113. Epub 2016 Jul 21.
6
ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi.ST8Sia2 多涎酸转移酶可预防克氏锥虫感染。
PLoS Negl Trop Dis. 2024 Sep 25;18(9):e0012454. doi: 10.1371/journal.pntd.0012454. eCollection 2024 Sep.
7
Engineering of sialylated mucin-type O-glycosylation in plants.在植物中工程化唾液酸化粘蛋白型 O-糖基化。
J Biol Chem. 2012 Oct 19;287(43):36518-26. doi: 10.1074/jbc.M112.402685. Epub 2012 Sep 4.

引用本文的文献

2
Plant-made pharmaceuticals.植物源药物。
Plant Biotechnol (Tokyo). 2024 Sep 25;41(3):243-260. doi: 10.5511/plantbiotechnology.24.0716a.
7
9
Production and -glycan engineering of Varlilumab in .Varlilumab在……中的生产及聚糖工程改造
Front Plant Sci. 2023 Aug 8;14:1215580. doi: 10.3389/fpls.2023.1215580. eCollection 2023.
10
Plant-based biopharmaceutical engineering.基于植物的生物制药工程
Nat Rev Bioeng. 2023;1(6):426-439. doi: 10.1038/s44222-023-00044-6. Epub 2023 Mar 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验