Suppr超能文献

用于光催化的异金属天线-反应器配合物

Heterometallic antenna-reactor complexes for photocatalysis.

作者信息

Swearer Dayne F, Zhao Hangqi, Zhou Linan, Zhang Chao, Robatjazi Hossein, Martirez John Mark P, Krauter Caroline M, Yazdi Sadegh, McClain Michael J, Ringe Emilie, Carter Emily A, Nordlander Peter, Halas Naomi J

机构信息

Department of Chemistry, Rice University, Houston, TX 77005;

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005;

出版信息

Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8916-20. doi: 10.1073/pnas.1609769113. Epub 2016 Jul 21.

Abstract

Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna-reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.

摘要

具有强光学共振特性的金属纳米粒子表现为纳米级光学天线,并且最近作为光驱动催化剂展现出非凡的前景。然而,传统上,多相催化依赖于诸如钯(Pd)、铂(Pt)、钌(Ru)或铑(Rh)等弱光吸收金属来降低化学反应的活化能。在此,我们表明将等离子体纳米天线直接耦合到催化纳米粒子上能够在催化剂纳米粒子内光诱导产生热载流子,从而将整个复合物转变为一种高效的光控反应催化剂。在钯修饰的铝纳米晶体中,光催化氢解吸紧密跟随天线诱导的钯岛局部吸收截面,并且超线性功率依赖性强烈表明热载流子诱导的解吸发生在钯岛表面。当乙炔与氢气同时存在时,相对于乙烷的光催化乙烯生产选择性显著增强,接近40:1。这些观察结果表明天线 - 反应器复合物可能极大地扩展开发定制光催化底物的可能性。

相似文献

1
Heterometallic antenna-reactor complexes for photocatalysis.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8916-20. doi: 10.1073/pnas.1609769113. Epub 2016 Jul 21.
2
Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts.
Nano Lett. 2016 Oct 12;16(10):6677-6682. doi: 10.1021/acs.nanolett.6b03582. Epub 2016 Sep 26.
3
Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes.
Nano Lett. 2020 Jun 10;20(6):4550-4557. doi: 10.1021/acs.nanolett.0c01405. Epub 2020 May 14.
5
Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.
Nano Lett. 2017 Jun 14;17(6):3710-3717. doi: 10.1021/acs.nanolett.7b00992. Epub 2017 May 10.
6
Transition-Metal Decorated Aluminum Nanocrystals.
ACS Nano. 2017 Oct 24;11(10):10281-10288. doi: 10.1021/acsnano.7b04960. Epub 2017 Oct 2.
8
Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
Acc Chem Res. 2021 Oct 5;54(19):3632-3642. doi: 10.1021/acs.accounts.1c00309. Epub 2021 Sep 7.
9
Al@TiO Core-Shell Nanoparticles for Plasmonic Photocatalysis.
ACS Nano. 2022 Apr 26;16(4):5839-5850. doi: 10.1021/acsnano.1c10995. Epub 2022 Mar 16.
10
Plasmonic Photocatalysis of Nitrous Oxide into N and O Using Aluminum-Iridium Antenna-Reactor Nanoparticles.
ACS Nano. 2019 Jul 23;13(7):8076-8086. doi: 10.1021/acsnano.9b02924. Epub 2019 Jun 24.

引用本文的文献

1
Inverted temperature gradients in gold-palladium antenna-reactor nanoparticles.
Nat Commun. 2025 Sep 1;16(1):8168. doi: 10.1038/s41467-025-63327-z.
2
Size, Composition, and Phase-Tunable Plasmonic Extinction in Au-Sn Alloy Nanoparticles.
J Phys Chem C Nanomater Interfaces. 2025 Jun 9;129(24):11070-11076. doi: 10.1021/acs.jpcc.5c00563. eCollection 2025 Jun 19.
4
Hydrogen production photocatalytic ammonia decomposition.
Chem Sci. 2025 Apr 24;16(21):9076-9091. doi: 10.1039/d5sc01834j. eCollection 2025 May 28.
8
Plasmonic Hot-Carrier Engineering at Bimetallic Nanoparticle/Semiconductor Interfaces: A Computational Perspective.
Small. 2025 Mar;21(11):e2410173. doi: 10.1002/smll.202410173. Epub 2025 Feb 16.
9
Water and seawater splitting with MgB plasmonic metal-based photocatalyst.
Sci Rep. 2025 Jan 7;15(1):1224. doi: 10.1038/s41598-024-82494-5.
10
Advances in fundamentals and application of plasmon-assisted CO photoreduction.
Nanophotonics. 2024 Feb 1;13(4):387-417. doi: 10.1515/nanoph-2023-0793. eCollection 2024 Feb.

本文引用的文献

1
Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms.
J Phys Chem C Nanomater Interfaces. 2016 Sep 22;120(37):20843-20851. doi: 10.1021/acs.jpcc.6b02103. Epub 2016 Apr 18.
2
Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation.
Nano Lett. 2016 Feb 10;16(2):1478-84. doi: 10.1021/acs.nanolett.5b05149. Epub 2016 Jan 29.
3
Resonances of nanoparticles with poor plasmonic metal tips.
Sci Rep. 2015 Nov 30;5:17431. doi: 10.1038/srep17431.
4
Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape.
Nat Mater. 2015 Dec;14(12):1236-44. doi: 10.1038/nmat4409. Epub 2015 Sep 7.
5
Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach.
J Am Chem Soc. 2015 Sep 16;137(36):11743-8. doi: 10.1021/jacs.5b06707. Epub 2015 Sep 8.
7
8
Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
Small. 2015 Aug 26;11(32):3873-89. doi: 10.1002/smll.201403777. Epub 2015 Jun 11.
9
Photochemical transformations on plasmonic metal nanoparticles.
Nat Mater. 2015 Jun;14(6):567-76. doi: 10.1038/nmat4281.
10
Aluminum nanocrystals.
Nano Lett. 2015 Apr 8;15(4):2751-5. doi: 10.1021/acs.nanolett.5b00614. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验