Department of Materials Science and Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.
ACS Nano. 2017 Oct 24;11(10):10281-10288. doi: 10.1021/acsnano.7b04960. Epub 2017 Oct 2.
Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.
最近,铝已被确定为用于等离子体应用的金和银的丰富替代物。特别是,铝纳米晶体已被证明是很有前途的等离子体光催化剂,尤其是当它们与催化金属或氧化物结合成“天线-反应器”异质结构时。在这里,提出了一种简单的多元醇合成方法,作为一种灵活的途径来制备用八种尺寸可调的过渡金属纳米颗粒岛装饰的铝纳米晶体,其中许多都作为异相催化剂具有先例。使用扫描透射电子显微镜和电子断层扫描进行的高分辨率和三维结构分析表明,可以实现在催化相关的少数纳米范围内大量纳米颗粒岛的装饰,许多岛彼此之间的间距很近。当与 Al 纳米晶体等离子体天线结合使用时,这些小的装饰岛将经历增加的光吸收和强热点产生。这种组合使过渡金属修饰的铝纳米晶体成为开发等离子体光催化、表面增强光谱学和量子等离子体学的有前途的材料平台。