School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China.
Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10766-70. doi: 10.1002/anie.201605515. Epub 2016 Jul 22.
The controlled exfoliation of hexagonal boron nitride (h-BN) into single- or few-layered nanosheets remains a grand challenge and becomes the bottleneck to essential studies and applications of h-BN. Here, we present an efficient strategy for the scalable synthesis of few-layered h-BN nanosheets (BNNS) using a novel gas exfoliation of bulk h-BN in liquid N2 (L-N2 ). The essence of this strategy lies in the combination of a high temperature triggered expansion of bulk h-BN and the cryogenic L-N2 gasification to exfoliate the h-BN. The produced BNNS after ten cycles (BNNS-10) consisted primarily of fewer than five atomic layers with a high mass yield of 16-20 %. N2 sorption and desorption isotherms show that the BNNS-10 exhibited a much higher specific surface area of 278 m(2) g(-1) than that of bulk BN (10 m(2) g(-1) ). Through the investigation of the exfoliated intermediates combined with a theoretical calculation, we found that the huge temperature variation initiates the expansion and curling of the bulk h-BN. Subseqently, the L-N2 penetrates into the interlayers of h-BN along the curling edge, followed by an immediate drastic gasification of L-N2 , further peeling off h-BN. This novel gas exfoliation of high surface area BNNS not only opens up potential opportunities for wide applications, but also can be extended to produce other layered materials in high yields.
六方氮化硼(h-BN)的可控剥离成单层或少数层纳米片仍然是一个巨大的挑战,成为 h-BN 基础研究和应用的瓶颈。在这里,我们提出了一种在液态氮(L-N2)中大规模合成少层 h-BN 纳米片(BNNS)的有效策略。该策略的本质在于将块状 h-BN 的高温膨胀与低温 L-N2 气化相结合,从而实现 h-BN 的剥离。经过十次循环(BNNS-10)后,得到的 BNNS 主要由少于五层的原子层组成,质量产率高达 16-20%。氮气吸附和解吸等温线表明,BNNS-10 的比表面积(278 m(2) g(-1))远高于块状 BN(10 m(2) g(-1))。通过对剥离中间体的研究以及理论计算,我们发现巨大的温度变化引发了块状 h-BN 的膨胀和卷曲。随后,L-N2 沿着卷曲边缘渗透到 h-BN 的层间,随后 L-N2 立即剧烈气化,进一步剥离 h-BN。这种新型高表面积 BNNS 的气体剥离方法不仅为广泛的应用开辟了潜在的机会,而且还可以扩展到高产率地生产其他层状材料。