Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, P. R. China.
Sci Rep. 2017 Jun 7;7(1):2991. doi: 10.1038/s41598-017-02762-5.
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.
重建复杂系统的网络是工程和科学领域中许多问题的关键之一。在本文中,我们没有根据预定义的模型来确定复杂系统的参数,也没有使用某些多项式和有理函数作为后续模型选择的先验信息,而是提出了一种从有限观测时间序列中重建非线性因果网络的通用框架。通过基于数据融合策略获得多源数据集,我们提出了一种处理复杂网络系统非线性和方向性的新方法,即组套索非线性条件格兰杰因果关系。特别地,我们的方法可以利用不同的径向基函数集来近似每对节点之间的非线性相互作用,并将稀疏性集成到分组变量选择中。我们的方法的性能特征首先通过来自非线性向量自回归模型和非线性动态模型的两类模拟数据集进行评估,然后基于 DREAM3 Challenge4 的基准数据集进行验证。还讨论了数据大小和噪声强度的影响。所有结果都表明,在较高的精度-召回曲线下,所提出的方法具有更好的性能。
IEEE Trans Pattern Anal Mach Intell. 2022-8
Comput Methods Programs Biomed. 2022-4
Neuroimage. 2014-10-15
IEEE J Biomed Health Inform. 2022-5
Front Neuroinform. 2016-6-14
J Neurosci Methods. 2014-5-30
Phys Rev E Stat Nonlin Soft Matter Phys. 2008-3
Entropy (Basel). 2024-12-6
Netw Neurosci. 2023-10-1
Entropy (Basel). 2020-12-21
Front Genet. 2019-6-4
Proc Natl Acad Sci U S A. 2016-7-5
Sci Rep. 2016-5-31
Proc Natl Acad Sci U S A. 2016-5-3
Proc Natl Acad Sci U S A. 2016-4-12
Nature. 2016-2-18
Phys Rev Lett. 2015-1-14