文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于组套索非线性条件格兰杰因果关系的复杂有向网络重建。

Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

机构信息

Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, P. R. China.

出版信息

Sci Rep. 2017 Jun 7;7(1):2991. doi: 10.1038/s41598-017-02762-5.


DOI:10.1038/s41598-017-02762-5
PMID:28592807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5462833/
Abstract

Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.

摘要

重建复杂系统的网络是工程和科学领域中许多问题的关键之一。在本文中,我们没有根据预定义的模型来确定复杂系统的参数,也没有使用某些多项式和有理函数作为后续模型选择的先验信息,而是提出了一种从有限观测时间序列中重建非线性因果网络的通用框架。通过基于数据融合策略获得多源数据集,我们提出了一种处理复杂网络系统非线性和方向性的新方法,即组套索非线性条件格兰杰因果关系。特别地,我们的方法可以利用不同的径向基函数集来近似每对节点之间的非线性相互作用,并将稀疏性集成到分组变量选择中。我们的方法的性能特征首先通过来自非线性向量自回归模型和非线性动态模型的两类模拟数据集进行评估,然后基于 DREAM3 Challenge4 的基准数据集进行验证。还讨论了数据大小和噪声强度的影响。所有结果都表明,在较高的精度-召回曲线下,所提出的方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/4bb907f423c2/41598_2017_2762_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/daecc4fa13b0/41598_2017_2762_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/b87ec530bb77/41598_2017_2762_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/c7d3aab37a57/41598_2017_2762_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/98d43133c933/41598_2017_2762_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/42dd311aa20f/41598_2017_2762_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/e28415fe9f8f/41598_2017_2762_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/5355c239b9d9/41598_2017_2762_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/b3a51918a8b6/41598_2017_2762_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/888c4fa3187a/41598_2017_2762_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/4bb907f423c2/41598_2017_2762_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/daecc4fa13b0/41598_2017_2762_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/b87ec530bb77/41598_2017_2762_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/c7d3aab37a57/41598_2017_2762_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/98d43133c933/41598_2017_2762_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/42dd311aa20f/41598_2017_2762_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/e28415fe9f8f/41598_2017_2762_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/5355c239b9d9/41598_2017_2762_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/b3a51918a8b6/41598_2017_2762_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/888c4fa3187a/41598_2017_2762_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5462833/4bb907f423c2/41598_2017_2762_Fig10_HTML.jpg

相似文献

[1]
Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

Sci Rep. 2017-6-7

[2]
Nonlinear causal network learning via Granger causality based on extreme support vector regression.

Chaos. 2024-2-1

[3]
Neural Granger Causality.

IEEE Trans Pattern Anal Mach Intell. 2022-8

[4]
Granger causality test with nonlinear neural-network-based methods: Python package and simulation study.

Comput Methods Programs Biomed. 2022-4

[5]
A copula approach to assessing Granger causality.

Neuroimage. 2014-10-15

[6]
A Nonlinear Effective Connectivity Measure Based on Granger Causality and Volterra Series.

IEEE J Biomed Health Inform. 2022-5

[7]
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression.

Front Neuroinform. 2016-6-14

[8]
Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron.

J Neurosci Methods. 2014-5-30

[9]
Comparison of nonlinear Granger causality extensions for low-dimensional systems.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008-3

[10]
Inferring connectivity in networked dynamical systems: Challenges using Granger causality.

Phys Rev E. 2016-9

引用本文的文献

[1]
Robust Model-Free Identification of the Causal Networks Underlying Complex Nonlinear Systems.

Entropy (Basel). 2024-12-6

[2]
Description length guided nonlinear unified Granger causality analysis.

Netw Neurosci. 2023-10-1

[3]
A novel probabilistic generator for large-scale gene association networks.

PLoS One. 2021

[4]
Measuring the Coupling Direction between Neural Oscillations with Weighted Symbolic Transfer Entropy.

Entropy (Basel). 2020-12-21

[5]
Review of Causal Discovery Methods Based on Graphical Models.

Front Genet. 2019-6-4

[6]
Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data.

Sci Rep. 2018-5-1

[7]
'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

Front Microbiol. 2018-1-24

本文引用的文献

[1]
BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.

Sci Rep. 2016-11-23

[2]
Reconstructing direct and indirect interactions in networked public goods game.

Sci Rep. 2016-7-22

[3]
Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables.

Sci Rep. 2016-7-8

[4]
Causal inference and the data-fusion problem.

Proc Natl Acad Sci U S A. 2016-7-5

[5]
Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction.

Bioinformatics. 2016-6-15

[6]
Identifying structures of continuously-varying weighted networks.

Sci Rep. 2016-5-31

[7]
Part mutual information for quantifying direct associations in networks.

Proc Natl Acad Sci U S A. 2016-5-3

[8]
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

Proc Natl Acad Sci U S A. 2016-4-12

[9]
Universal resilience patterns in complex networks.

Nature. 2016-2-18

[10]
Robust reconstruction of complex networks from sparse data.

Phys Rev Lett. 2015-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索