Suppr超能文献

Improving Human-Machine Cooperative Classification Via Cognitive Theories of Similarity.

作者信息

Roads Brett D, Mozer Michael C

机构信息

Department of Computer Science and Institute of Cognitive Science, University of Colorado.

出版信息

Cogn Sci. 2017 Jul;41(5):1394-1411. doi: 10.1111/cogs.12400. Epub 2016 Jul 22.

Abstract

Acquiring perceptual expertise is slow and effortful. However, untrained novices can accurately make difficult classification decisions (e.g., skin-lesion diagnosis) by reformulating the task as similarity judgment. Given a query image and a set of reference images, individuals are asked to select the best matching reference. When references are suitably chosen, the procedure yields an implicit classification of the query image. To optimize reference selection, we develop and evaluate a predictive model of similarity-based choice. The model builds on existing psychological literature and accommodates stochastic, dynamic shifts of attention among visual feature dimensions. We perform a series of human experiments with two stimulus types (rectangles, faces) and nine classification tasks to validate the model and to demonstrate the model's potential to boost performance. Our system achieves high accuracy for participants who are naive as to the classification task, even when the classification task switches from trial to trial.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验