Suppr超能文献

非洲药用植物潜在抗癌剂的药效团建模与计算机毒性评估

Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

作者信息

Ntie-Kang Fidele, Simoben Conrad Veranso, Karaman Berin, Ngwa Valery Fuh, Judson Philip Neville, Sippl Wolfgang, Mbaze Luc Meva'a

机构信息

Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; Department of Chemistry, University of Buea, Buea, Cameroon.

Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.

出版信息

Drug Des Devel Ther. 2016 Jul 4;10:2137-54. doi: 10.2147/DDDT.S108118. eCollection 2016.

Abstract

Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

摘要

分子建模已被用于寻找抗癌化疗的先导化合物。在本研究中,已生成并验证了药效团模型,用于八个已知抗癌药物靶点的虚拟筛选方案,这些靶点包括酪氨酸激酶、蛋白激酶Bβ、细胞周期蛋白依赖性激酶、蛋白质法尼基转移酶、人蛋白激酶、糖原合酶激酶和吲哚胺2,3-双加氧酶1。通过受试者工作特征曲线和Güner-Henry评分方法对药效团模型进行了验证,表明所生成的几个模型可用于从天然产物数据库中识别潜在的抗癌药物。经过验证的药效团模型被用作三维搜索查询,用于对新开发的非洲癌症数据库(约400种来自非洲药用植物的化合物)以及天然存在的植物源抗癌化合物-活性-靶点数据集(包含约1500种来自世界各地已发表的天然存在的植物源化合物)进行虚拟筛选。此外,利用拉萨基于专家知识的系统(Derek)预测的88个毒性终点,对这两个数据集进行了计算机毒性评估,结果表明,只有极小一部分有前景的抗癌药物可能显示出高毒性特征。使用常用于评估化合物数据集药物相似性的最重要物理化学性质的主成分分析对这两个数据集进行的多样性研究表明,这两个数据集不占据相同的化学空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe8/4938243/3b2deb82f78c/dddt-10-2137Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验