Suppr超能文献

微藻生物柴油生产的进展与挑战

Progress and Challenges in Microalgal Biodiesel Production.

作者信息

Mallick Nirupama, Bagchi Sourav K, Koley Shankha, Singh Akhilesh K

机构信息

Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur India.

Amity Institute of Biotechnology, Amity University at Lucknow, Lucknow India.

出版信息

Front Microbiol. 2016 Jun 30;7:1019. doi: 10.3389/fmicb.2016.01019. eCollection 2016.

Abstract

The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50-60% (dry cell weight) as compared with some best agricultural oil crops of only 5-10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less number of detailed study reports available. In this review, a pragmatic and critical analysis was tried to put forward with the on-going researches on isolation and screening of oleaginous microalgae, microalgal large scale cultivation, biomass harvesting, drying, lipid extraction and finally biodiesel production.

摘要

在过去十年中,由于化石燃料储备因交通运输的巨大需求而不可逆转地减少,同时温室气体(GHG)向大气中的排放量不断增加,生物燃料研究获得了巨大的推动力。鉴于迫切需要减少二氧化碳排放,并考虑到原油地位的下降,各国政府不仅为生物燃料项目投入了大量资金,还为生产生物燃料的供应商提供了激励措施。目前,利用微藻生物质生产生物柴油已变得极为重要,因为它有可能避免优质农业土地使用和食品安全问题。此外,微藻可以在海水或废水中生长,与一些最佳的含油量仅为5%-10%的农业油料作物相比,微藻油含量可超过50%-60%(干细胞重量)。在全球范围内,微藻是最高产的生物质生产者和中性脂质积累者,超过任何其他陆地油料作物。然而,从菌株选择和脂质积累/产量、藻类大规模培养,到收获、干燥、油提取和生物柴油转化(酯交换)等下游过程,乃至整个生产过程,每一步都存在许多障碍。产油微藻的分离和筛选是一个关键的上游因素,应根据淡水或海洋藻类的需求来解决,同时要考虑到野生型本地分离株可能最适合从实验室到大规模开发的应用。如今,有大量关于微藻生物柴油生产的文献,但没有一篇详细描述了微藻生物柴油生产上下游过程的具体步骤及其优缺点。具体而言,收获和干燥占总生产成本的50%以上;然而,详细的研究报告却相当少。在这篇综述中,我们试图对正在进行的产油微藻分离和筛选、微藻大规模培养、生物质收获、干燥、脂质提取以及最终生物柴油生产的研究进行务实和批判性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1801/4927567/b35da52e5be2/fmicb-07-01019-g001.jpg

相似文献

1
Progress and Challenges in Microalgal Biodiesel Production.
Front Microbiol. 2016 Jun 30;7:1019. doi: 10.3389/fmicb.2016.01019. eCollection 2016.
3
Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus.
Bioresour Technol. 2013 Aug;142:39-44. doi: 10.1016/j.biortech.2013.05.058. Epub 2013 May 23.
4
Biodiesel production with microalgae as feedstock: from strains to biodiesel.
Biotechnol Lett. 2011 Jul;33(7):1269-84. doi: 10.1007/s10529-011-0574-z. Epub 2011 Mar 5.
6
Methods of downstream processing for the production of biodiesel from microalgae.
Biotechnol Adv. 2013 Nov;31(6):862-76. doi: 10.1016/j.biotechadv.2013.04.006. Epub 2013 Apr 28.
8
Advances in direct transesterification of algal oils from wet biomass.
Bioresour Technol. 2015 May;184:267-275. doi: 10.1016/j.biortech.2014.10.089. Epub 2014 Oct 25.
9
Microalgal lipids biochemistry and biotechnological perspectives.
Biotechnol Adv. 2014 Dec;32(8):1476-93. doi: 10.1016/j.biotechadv.2014.10.003. Epub 2014 Oct 14.
10
Molecular Identification and Comparative Evaluation of Tropical Marine Microalgae for Biodiesel Production.
Mar Biotechnol (NY). 2017 Aug;19(4):328-344. doi: 10.1007/s10126-017-9754-8. Epub 2017 Jun 16.

引用本文的文献

1
Kinetic parameters of (Chlorophyceae) growth and yield under different cultivation conditions .
PeerJ. 2025 Aug 11;13:e17879. doi: 10.7717/peerj.17879. eCollection 2025.
2
Efficient secretory production of recombinant proteins in microalgae using an exogenous signal peptide.
Front Microbiol. 2025 Jun 18;16:1603204. doi: 10.3389/fmicb.2025.1603204. eCollection 2025.
4
Photocatalytic Material-Microorganism Hybrid System and Its Application-A Review.
Micromachines (Basel). 2022 May 30;13(6):861. doi: 10.3390/mi13060861.
7
A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose.
Plant Biotechnol J. 2021 Jan;19(1):124-137. doi: 10.1111/pbi.13447. Epub 2020 Sep 2.
10
Microalgae for High-Value Products Towards Human Health and Nutrition.
Mar Drugs. 2019 May 24;17(5):304. doi: 10.3390/md17050304.

本文引用的文献

1
Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina.
Bot Stud. 2015 Dec;56(1):6. doi: 10.1186/s40529-015-0085-7. Epub 2015 Apr 8.
2
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Front Microbiol. 2015 Dec 15;6:1376. doi: 10.3389/fmicb.2015.01376. eCollection 2015.
3
The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049.
Bioresour Technol. 2015 Sep;192:157-64. doi: 10.1016/j.biortech.2015.04.106. Epub 2015 May 6.
4
Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp.
Bioresour Technol. 2015 Mar;180:207-13. doi: 10.1016/j.biortech.2014.12.092. Epub 2015 Jan 6.
5
Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.
Metab Eng. 2015 Jan;27:1-9. doi: 10.1016/j.ymben.2014.10.002. Epub 2014 Oct 24.
7
Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea.
Biotechnol Biofuels. 2014 Sep 4;7(1):128. doi: 10.1186/s13068-014-0128-4. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验