Suppr超能文献

一种基于微藻的制剂,对经过化学处理的木质纤维素具有协同的纤维素分解和解毒作用。

A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose.

机构信息

Dipartimento di Biotecnologie, Università di Verona, Verona, Italy.

Faculty of Science, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

出版信息

Plant Biotechnol J. 2021 Jan;19(1):124-137. doi: 10.1111/pbi.13447. Epub 2020 Sep 2.

Abstract

High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.

摘要

高温生物转化木质纤维素为可发酵糖因其能高效生产可再生化学品和生物燃料而受到关注,因为高温下竞争性微生物活性受到抑制,且耐热细胞壁降解酶优于嗜温酶。在这里,我们报告了在莱茵衣藻叶绿体中生产四种不同耐热细胞壁降解酶的平台的开发。该酶混合物由来源于 C. saccharolyticus 的纤维二糖水解酶 CBM3GH5、来源于 P. furiosus 的β-葡萄糖苷酶 celB、内切葡聚糖酶 B 和内切木聚糖酶 XynA 组成。此外,通过转叶绿体工程,使微藻能够表达来自恶臭假单胞菌的亚磷酸盐脱氢酶 D,从而能够在非无菌培养基中通过选择性亚磷酸盐营养进行生长。由糖苷水解酶 (GH) 结构域 GH12/GH5/GH1 组成的纤维素酶混合物允许碱性处理的木质纤维素在 48h 反应和 0.05%(w/w)酶加载条件下转化为葡萄糖,效率范围为 14%至 17%。经处理的纤维素材料的水解物与转基因微藻的提取物一起,提高了产甲烷菌的沼气产量和产油微藻普通小球藻的混合营养生长。值得注意的是,微藻处理抑制了生物质碱性处理释放的抑制性副产物的不利影响,从而使 C. vulgaris 在混合营养生长下能够有效同化木质纤维素衍生的糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a02a/11385653/29a9bf631d86/PBI-19-124-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验