Suppr超能文献

真核微藻的代谢工程:潜力与挑战并存于巨大的多样性之中。

In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.

作者信息

Gimpel Javier A, Henríquez Vitalia, Mayfield Stephen P

机构信息

Chemical and Biotechnology Engineering Department, Centre for Biotechnology and Bioengineering, Universidad de Chile Santiago, Chile.

Instituto de Biología, Pontificia Universidad Católica de Valparaíso Valparaiso, Chile.

出版信息

Front Microbiol. 2015 Dec 15;6:1376. doi: 10.3389/fmicb.2015.01376. eCollection 2015.

Abstract

The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed.

摘要

微藻巨大的系统发育多样性伴随着种类繁多的有趣且有用的代谢产物。然而,微藻中的代谢工程一直受到限制,因为必须针对每个物种的核基因组或叶绿体基因组开发特定的转化工具。微藻作为代谢产物的生产平台,相对于植物和其他微生物具有若干优势,例如分别具有转基因生物遏制能力和降低培养基成本的优势。目前,微藻已被证明特别适合商业生产ω-3脂肪酸和类胡萝卜素。因此,大多数代谢工程策略都是针对这些代谢产物开发的。微藻生物燃料最近也备受关注,人们致力于提高氢气和光合产物,特别是三酰甘油的产量。微藻的代谢途径也已被调控,以改善特定条件下的光合生长并实现营养转化。尽管这些途径与次生代谢产物没有严格关系,但合成生物学方法有可能应用于该领域,也将对此进行讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af80/4678203/7599f12b1c70/fmicb-06-01376-g001.jpg

相似文献

1
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Front Microbiol. 2015 Dec 15;6:1376. doi: 10.3389/fmicb.2015.01376. eCollection 2015.
2
Metabolic Engineering of Microalgae for Biofuel Production.
Methods Mol Biol. 2020;1980:153-172. doi: 10.1007/7651_2018_205.
3
Enhancement of lipid accumulation in microalgae by metabolic engineering.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Apr;1864(4):552-566. doi: 10.1016/j.bbalip.2018.10.004. Epub 2018 Oct 8.
4
State of the art and challenges of biohydrogen from microalgae.
Bioresour Technol. 2019 Oct;289:121747. doi: 10.1016/j.biortech.2019.121747. Epub 2019 Jul 2.
5
Microalgal metabolic engineering strategies for the production of fuels and chemicals.
Bioresour Technol. 2022 Feb;345:126529. doi: 10.1016/j.biortech.2021.126529. Epub 2021 Dec 9.
6
Microalgae as a Source for VLC-PUFA Production.
Subcell Biochem. 2016;86:471-510. doi: 10.1007/978-3-319-25979-6_19.
7
Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory.
World J Microbiol Biotechnol. 2018 Nov 26;34(12):183. doi: 10.1007/s11274-018-2567-8.
8
Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects.
Front Bioeng Biotechnol. 2022 Mar 23;10:836056. doi: 10.3389/fbioe.2022.836056. eCollection 2022.
9
High-value bioproducts from microalgae: Strategies and progress.
Crit Rev Food Sci Nutr. 2019;59(15):2423-2441. doi: 10.1080/10408398.2018.1455030. Epub 2018 Dec 3.
10
Synthetic Biology Approaches To Enhance Microalgal Productivity.
Trends Biotechnol. 2021 Oct;39(10):1019-1036. doi: 10.1016/j.tibtech.2020.12.010. Epub 2021 Feb 1.

引用本文的文献

1
Microalgae: revolutionizing skin repair and enhancement.
Biotechnol Rep (Amst). 2025 Aug 6;47:e00911. doi: 10.1016/j.btre.2025.e00911. eCollection 2025 Sep.
2
The Strategies Microalgae Adopt to Counteract the Toxic Effect of Heavy Metals.
Microorganisms. 2025 Apr 25;13(5):989. doi: 10.3390/microorganisms13050989.
3
Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory.
BioTech (Basel). 2025 Jan 29;14(1):6. doi: 10.3390/biotech14010006.
5
Enhanced cold tolerance mechanisms in : comparative analysis of pre-adaptation and direct low-temperature exposure.
Front Microbiol. 2024 Oct 17;15:1465351. doi: 10.3389/fmicb.2024.1465351. eCollection 2024.
6
Current Scenario and Global Perspective of Sustainable Algal Biofuel Production.
Recent Pat Biotechnol. 2025;19(4):276-300. doi: 10.2174/0118722083322399240927051315.
7
Perspectives for Using CO as a Feedstock for Biomanufacturing of Fuels and Chemicals.
Bioengineering (Basel). 2023 Nov 26;10(12):1357. doi: 10.3390/bioengineering10121357.
8
Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review.
Front Bioeng Biotechnol. 2023 Jan 13;10:1104914. doi: 10.3389/fbioe.2022.1104914. eCollection 2022.
10
Nature's fight against plastic pollution: Algae for plastic biodegradation and bioplastics production.
Environ Sci Ecotechnol. 2020 Nov 5;4:100065. doi: 10.1016/j.ese.2020.100065. eCollection 2020 Oct.

本文引用的文献

2
HOW MANY SPECIES OF ALGAE ARE THERE?
J Phycol. 2012 Oct;48(5):1057-63. doi: 10.1111/j.1529-8817.2012.01222.x. Epub 2012 Sep 20.
3
A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.
Metab Eng. 2015 Jul;30:49-60. doi: 10.1016/j.ymben.2015.03.019. Epub 2015 Apr 25.
4
Designer diatom episomes delivered by bacterial conjugation.
Nat Commun. 2015 Apr 21;6:6925. doi: 10.1038/ncomms7925.
6
Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.
Plant J. 2015 May;82(3):393-412. doi: 10.1111/tpj.12801. Epub 2015 Mar 16.
8
Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.
Plant J. 2015 May;82(3):532-546. doi: 10.1111/tpj.12781. Epub 2015 Mar 8.
9
Chlamydomonas as a model for biofuels and bio-products production.
Plant J. 2015 May;82(3):523-531. doi: 10.1111/tpj.12780. Epub 2015 Feb 18.
10
Metabolic engineering of higher plants and algae for isoprenoid production.
Adv Biochem Eng Biotechnol. 2015;148:161-99. doi: 10.1007/10_2014_290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验