Karri S P K, Chakraborthi Debjani, Chatterjee Jyotirmoy
School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India.
Department of Mathematics, IIT Kharagpur, Kharagpur, India.
Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.
We present an algorithm for layer-specific edge detection in retinal optical coherence tomography images through a structured learning algorithm to reinforce traditional graph-based retinal layer segmentation. The proposed algorithm simultaneously identifies individual layers and their corresponding edges, resulting in the computation of layer-specific edges in 1 second. These edges augment classical dynamic programming based segmentation under layer deformation, shadow artifacts noise, and without heuristics or prior knowledge. We considered Duke's online data set containing 110 B-scans of 10 diabetic macular edema subjects with 8 retinal layers annotated by two experts for experimentation, and achieved a mean distance error of 1.38 pixels whereas that of the state-of-the-art was 1.68 pixels.
我们提出了一种用于视网膜光学相干断层扫描图像中特定层边缘检测的算法,该算法通过结构化学习算法来加强传统的基于图的视网膜层分割。所提出的算法同时识别各个层及其相应的边缘,能够在1秒内计算出特定层的边缘。这些边缘在层变形、阴影伪影噪声的情况下增强了基于经典动态规划的分割,且无需启发式方法或先验知识。我们使用了杜克大学的在线数据集进行实验,该数据集包含10名糖尿病性黄斑水肿患者的110次B扫描,有两位专家对8个视网膜层进行了标注,我们实现的平均距离误差为1.38像素,而目前最先进方法的平均距离误差为1.68像素。