Suppr超能文献

学习用于分割具有大变形的视网膜层的特定层边缘。

Learning layer-specific edges for segmenting retinal layers with large deformations.

作者信息

Karri S P K, Chakraborthi Debjani, Chatterjee Jyotirmoy

机构信息

School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India.

Department of Mathematics, IIT Kharagpur, Kharagpur, India.

出版信息

Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.

Abstract

We present an algorithm for layer-specific edge detection in retinal optical coherence tomography images through a structured learning algorithm to reinforce traditional graph-based retinal layer segmentation. The proposed algorithm simultaneously identifies individual layers and their corresponding edges, resulting in the computation of layer-specific edges in 1 second. These edges augment classical dynamic programming based segmentation under layer deformation, shadow artifacts noise, and without heuristics or prior knowledge. We considered Duke's online data set containing 110 B-scans of 10 diabetic macular edema subjects with 8 retinal layers annotated by two experts for experimentation, and achieved a mean distance error of 1.38 pixels whereas that of the state-of-the-art was 1.68 pixels.

摘要

我们提出了一种用于视网膜光学相干断层扫描图像中特定层边缘检测的算法,该算法通过结构化学习算法来加强传统的基于图的视网膜层分割。所提出的算法同时识别各个层及其相应的边缘,能够在1秒内计算出特定层的边缘。这些边缘在层变形、阴影伪影噪声的情况下增强了基于经典动态规划的分割,且无需启发式方法或先验知识。我们使用了杜克大学的在线数据集进行实验,该数据集包含10名糖尿病性黄斑水肿患者的110次B扫描,有两位专家对8个视网膜层进行了标注,我们实现的平均距离误差为1.38像素,而目前最先进方法的平均距离误差为1.68像素。

相似文献

1
Learning layer-specific edges for segmenting retinal layers with large deformations.
Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.
2
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
3
Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.
Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.
4
Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images.
J Med Syst. 2019 Nov 13;43(12):336. doi: 10.1007/s10916-019-1452-9.
5
A single-step regression method based on transformer for retinal layer segmentation.
Phys Med Biol. 2022 Jul 8;67(14). doi: 10.1088/1361-6560/ac799a.
7
Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context.
Biomed Opt Express. 2017 Feb 27;8(3):1874-1888. doi: 10.1364/BOE.8.001874. eCollection 2017 Mar 1.
8
Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.
Int J Comput Assist Radiol Surg. 2018 Sep;13(9):1369-1377. doi: 10.1007/s11548-018-1795-6. Epub 2018 May 29.
10
Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.
IEEE Trans Med Imaging. 2008 Oct;27(10):1495-505. doi: 10.1109/TMI.2008.923966.

引用本文的文献

1
Bibliometric analysis of research on the application of deep learning to ophthalmology.
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.
2
BreakNet: discontinuity-resilient multi-scale transformer segmentation of retinal layers.
Biomed Opt Express. 2024 Nov 6;15(12):6725-6738. doi: 10.1364/BOE.538904. eCollection 2024 Dec 1.
3
Exploiting multi-granularity visual features for retinal layer segmentation in human eyes.
Front Bioeng Biotechnol. 2023 Jun 1;11:1191803. doi: 10.3389/fbioe.2023.1191803. eCollection 2023.
4
A bibliometric analysis of artificial intelligence applications in macular edema: exploring research hotspots and Frontiers.
Front Cell Dev Biol. 2023 May 15;11:1174936. doi: 10.3389/fcell.2023.1174936. eCollection 2023.
6
CTS-Net: A Segmentation Network for Glaucoma Optical Coherence Tomography Retinal Layer Images.
Bioengineering (Basel). 2023 Feb 8;10(2):230. doi: 10.3390/bioengineering10020230.
7
Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework.
J Med Imaging (Bellingham). 2023 Jan;10(1):014006. doi: 10.1117/1.JMI.10.1.014006. Epub 2023 Feb 21.
8
Artificial intelligence in OCT angiography.
Prog Retin Eye Res. 2021 Nov;85:100965. doi: 10.1016/j.preteyeres.2021.100965. Epub 2021 Mar 22.
9
Structured layer surface segmentation for retina OCT using fully convolutional regression networks.
Med Image Anal. 2021 Feb;68:101856. doi: 10.1016/j.media.2020.101856. Epub 2020 Oct 14.
10
Fully Convolutional Boundary Regression for Retina OCT Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.

本文引用的文献

1
Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.
Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.
2
Optical coherence tomography today: speed, contrast, and multimodality.
J Biomed Opt. 2014;19(7):071412. doi: 10.1117/1.JBO.19.7.071412.
3
Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
Med Image Anal. 2014 Jul;18(5):781-94. doi: 10.1016/j.media.2014.03.004. Epub 2014 Apr 13.
4
Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology.
Biomed Opt Express. 2014 Jan 7;5(2):348-65. doi: 10.1364/BOE.5.000348. eCollection 2014 Feb 1.
5
Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography.
Ophthalmology. 2014 Jan;121(1):162-172. doi: 10.1016/j.ophtha.2013.07.013. Epub 2013 Aug 29.
6
Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.
Med Image Anal. 2013 Dec;17(8):907-28. doi: 10.1016/j.media.2013.05.006. Epub 2013 Jun 11.
7
Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints.
IEEE Trans Med Imaging. 2013 Mar;32(3):531-43. doi: 10.1109/TMI.2012.2225152. Epub 2012 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验