Chiu Stephanie J, Allingham Michael J, Mettu Priyatham S, Cousins Scott W, Izatt Joseph A, Farsiu Sina
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.
We present a fully automatic algorithm to identify fluid-filled regions and seven retinal layers on spectral domain optical coherence tomography images of eyes with diabetic macular edema (DME). To achieve this, we developed a kernel regression (KR)-based classification method to estimate fluid and retinal layer positions. We then used these classification estimates as a guide to more accurately segment the retinal layer boundaries using our previously described graph theory and dynamic programming (GTDP) framework. We validated our algorithm on 110 B-scans from ten patients with severe DME pathology, showing an overall mean Dice coefficient of 0.78 when comparing our KR + GTDP algorithm to an expert grader. This is comparable to the inter-observer Dice coefficient of 0.79. The entire data set is available online, including our automatic and manual segmentation results. To the best of our knowledge, this is the first validated, fully-automated, seven-layer and fluid segmentation method which has been applied to real-world images containing severe DME.
我们提出了一种全自动算法,用于在患有糖尿病性黄斑水肿(DME)的眼睛的光谱域光学相干断层扫描图像上识别液体填充区域和七个视网膜层。为实现这一目标,我们开发了一种基于核回归(KR)的分类方法来估计液体和视网膜层的位置。然后,我们使用这些分类估计作为指导,利用我们之前描述的图论和动态规划(GTDP)框架更准确地分割视网膜层边界。我们在来自十名患有严重DME病变患者的110次B扫描上验证了我们的算法,将我们的KR + GTDP算法与专家分级进行比较时,总体平均骰子系数为0.78。这与观察者间的骰子系数0.79相当。整个数据集可在线获取,包括我们的自动和手动分割结果。据我们所知,这是第一种经过验证的、全自动的、七层和液体分割方法,已应用于包含严重DME的真实世界图像。