Suppr超能文献

基于光学相干断层扫描的视网膜囊肿分割的机器学习算法综述

A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography.

机构信息

Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.

出版信息

Sensors (Basel). 2023 Mar 15;23(6):3144. doi: 10.3390/s23063144.

Abstract

Optical coherence tomography (OCT) is an emerging imaging technique for diagnosing ophthalmic diseases and the visual analysis of retinal structure changes, such as exudates, cysts, and fluid. In recent years, researchers have increasingly focused on applying machine learning algorithms, including classical machine learning and deep learning methods, to automate retinal cysts/fluid segmentation. These automated techniques can provide ophthalmologists with valuable tools for improved interpretation and quantification of retinal features, leading to more accurate diagnosis and informed treatment decisions for retinal diseases. This review summarized the state-of-the-art algorithms for the three essential steps of cyst/fluid segmentation: image denoising, layer segmentation, and cyst/fluid segmentation, while emphasizing the significance of machine learning techniques. Additionally, we provided a summary of the publicly available OCT datasets for cyst/fluid segmentation. Furthermore, the challenges, opportunities, and future directions of artificial intelligence (AI) in OCT cyst segmentation are discussed. This review is intended to summarize the key parameters for the development of a cyst/fluid segmentation system and the design of novel segmentation algorithms and has the potential to serve as a valuable resource for imaging researchers in the development of assessment systems related to ocular diseases exhibiting cyst/fluid in OCT imaging.

摘要

光学相干断层扫描(OCT)是一种新兴的成像技术,可用于诊断眼科疾病和视网膜结构变化的视觉分析,例如渗出物、囊肿和液体积聚。近年来,研究人员越来越关注应用机器学习算法,包括经典机器学习和深度学习方法,实现视网膜囊肿/液体积聚的自动分割。这些自动化技术可以为眼科医生提供有价值的工具,以改善对视网膜特征的解释和量化,从而更准确地诊断和制定基于病情的治疗决策。本综述总结了用于囊肿/液体积聚分割的三个基本步骤(图像去噪、层分割和囊肿/液体积聚分割)的最新算法,强调了机器学习技术的重要性。此外,我们还提供了用于囊肿/液体积聚分割的公开可用的 OCT 数据集的概述。此外,还讨论了人工智能(AI)在 OCT 囊肿分割中的挑战、机遇和未来发展方向。本综述旨在总结用于开发囊肿/液体积聚分割系统的关键参数,以及设计新型分割算法,有望为从事 OCT 成像中存在囊肿/液体积聚的眼部疾病评估系统开发的成像研究人员提供有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7472/10054815/cc1e3dd5ac47/sensors-23-03144-g005.jpg

相似文献

2
A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography B-scans.
Comput Methods Programs Biomed. 2018 Jan;153:105-114. doi: 10.1016/j.cmpb.2017.10.010. Epub 2017 Oct 12.
4
Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model.
IEEE J Biomed Health Inform. 2019 Jan;23(1):296-304. doi: 10.1109/JBHI.2018.2810379. Epub 2018 Feb 28.
5
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.
Comput Biol Med. 2023 Mar;154:106512. doi: 10.1016/j.compbiomed.2022.106512. Epub 2023 Jan 10.
6
On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images.
Bioengineering (Basel). 2023 Mar 24;10(4):407. doi: 10.3390/bioengineering10040407.
7
Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier.
IEEE J Biomed Health Inform. 2019 Jul;23(4):1404-1416. doi: 10.1109/JBHI.2018.2856276. Epub 2018 Jul 16.
8
Segmentation of Retinal Cysts From Optical Coherence Tomography Volumes Via Selective Enhancement.
IEEE J Biomed Health Inform. 2019 Jan;23(1):273-282. doi: 10.1109/JBHI.2018.2793534. Epub 2018 Jan 15.
9
10
RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge.
IEEE Trans Med Imaging. 2019 Aug;38(8):1858-1874. doi: 10.1109/TMI.2019.2901398. Epub 2019 Feb 26.

引用本文的文献

1
HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images.
Biomed Opt Express. 2024 Aug 19;15(9):5359-5383. doi: 10.1364/BOE.530469. eCollection 2024 Sep 1.
3
Optimal Deep Learning Architecture for Automated Segmentation of Cysts in OCT Images Using X-Let Transforms.
Diagnostics (Basel). 2023 Jun 7;13(12):1994. doi: 10.3390/diagnostics13121994.

本文引用的文献

3
RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network.
J Digit Imaging. 2021 Jun;34(3):691-704. doi: 10.1007/s10278-021-00459-w. Epub 2021 Jun 2.
4
Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images.
Biomed Opt Express. 2021 Mar 22;12(4):2204-2220. doi: 10.1364/BOE.417212. eCollection 2021 Apr 1.
6
Capsules for biomedical image segmentation.
Med Image Anal. 2021 Feb;68:101889. doi: 10.1016/j.media.2020.101889. Epub 2020 Nov 5.
7
Optical coherence tomography angiography in diabetic retinopathy: an updated review.
Eye (Lond). 2021 Jan;35(1):149-161. doi: 10.1038/s41433-020-01233-y. Epub 2020 Oct 24.
9
Fully Convolutional Boundary Regression for Retina OCT Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.
10
RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge.
IEEE Trans Med Imaging. 2019 Aug;38(8):1858-1874. doi: 10.1109/TMI.2019.2901398. Epub 2019 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验