Suppr超能文献

基于纹理的肝脏纤维化磁共振成像分类

Texture-based classification of liver fibrosis using MRI.

作者信息

House Michael J, Bangma Sander J, Thomas Mervyn, Gan Eng K, Ayonrinde Oyekoya T, Adams Leon A, Olynyk John K, St Pierre Tim G

机构信息

School of Physics, The University of Western Australia, Crawley, Western Australia, Australia.

出版信息

J Magn Reson Imaging. 2015 Feb;41(2):322-8. doi: 10.1002/jmri.24536. Epub 2013 Dec 18.

Abstract

PURPOSE

To investigate the ability of texture analysis of MRI images to stage liver fibrosis. Current noninvasive approaches for detecting liver fibrosis have limitations and cannot yet routinely replace biopsy for diagnosing significant fibrosis.

MATERIALS AND METHODS

Forty-nine patients with a range of liver diseases and biopsy-confirmed fibrosis were enrolled in the study. For texture analysis all patients were scanned with a T2 -weighted, high-resolution, spin echo sequence and Haralick texture features applied. The area under the receiver operating characteristics curve (AUROC) was used to assess the diagnostic performance of the texture analysis.

RESULTS

The best mean AUROC achieved for separating mild from severe fibrosis was 0.81. The inclusion of age, liver fat and liver R2 variables into the generalized linear model improved AUROC values for all comparisons, with the F0 versus F1-4 comparison the highest (0.91).

CONCLUSION

Our results suggest that a combination of MRI measures, that include selected texture features from T2 -weighted images, may be a useful tool for excluding fibrosis in patients with liver disease. However, texture analysis of MRI performs only modestly when applied to the classification of patients in the mild and intermediate fibrosis stages.

摘要

目的

研究磁共振成像(MRI)图像纹理分析对肝纤维化进行分期的能力。目前用于检测肝纤维化的非侵入性方法存在局限性,尚不能常规替代活检来诊断显著纤维化。

材料与方法

本研究纳入了49例患有一系列肝脏疾病且经活检证实有纤维化的患者。为进行纹理分析,所有患者均采用T2加权、高分辨率自旋回波序列进行扫描,并应用哈氏纹理特征。采用受试者操作特征曲线下面积(AUROC)来评估纹理分析的诊断性能。

结果

区分轻度与重度纤维化所获得的最佳平均AUROC为0.81。将年龄、肝脏脂肪和肝脏R2变量纳入广义线性模型后,所有比较的AUROC值均有所提高,其中F0与F1 - 4的比较中AUROC值最高(0.91)。

结论

我们的结果表明,包括从T2加权图像中选取的纹理特征在内的多种MRI测量方法相结合,可能是排除肝病患者纤维化的有用工具。然而,MRI纹理分析应用于轻度和中度纤维化阶段患者的分类时,表现一般。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验