Suppr超能文献

深度转录组谱分析揭示了在静态和振荡剪切应力条件下培养的内皮细胞之间的相似性。

Deep transcriptomic profiling reveals the similarity between endothelial cells cultured under static and oscillatory shear stress conditions.

机构信息

Department of Pharmacology, University of Michigan, Ann Arbor, Michigan; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan;

Department of Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan Medical Center, Ann Arbor, Michigan; and.

出版信息

Physiol Genomics. 2016 Sep 1;48(9):660-6. doi: 10.1152/physiolgenomics.00025.2016. Epub 2016 Jul 22.

Abstract

Atherosclerosis is a multifactorial disease that preferentially develops in specific regions in the arterial tree. This characteristic is mainly attributed to the unique pattern of hemodynamic shear stress in vivo. High laminar shear stress (LS) found in straight lumen exerts athero-protective effects. Low or oscillatory shear stress (OS) present in regions of lesser curvature and arterial bifurcations predisposes arterial intima to atherosclerosis. Shear stress-regulated endothelial function plays an important role in the process of atherosclerosis. Most in vitro research studies focusing on the molecular mechanisms of endothelial function are performed in endothelial cells (ECs) under cultured static (ST) condition. Some findings, however, are not recapitulated in subsequent translational studies, mostly likely due to the missing biomechanical milieu. Here, we profiled the whole transcriptome of primary human coronary arterial endothelial cells (HCAECs) under different shear stress conditions with RNA sequencing. Among 16,313 well-expressed genes, we detected 8,177 that were differentially expressed in OS vs. LS conditions and 9,369 in ST vs. LS conditions. Notably, only 1,618 were differentially expressed in OS vs. ST conditions. Hierarchical clustering of ECs demonstrated a strong similarity between ECs under OS and ST conditions at the transcriptome level. Subsequent pairwise heat mapping and principal component analysis gave further weight to the similarity. At the individual gene level, expressional analysis of representative well-known genes as well as novel genes showed a comparable amount at mRNA and protein levels in ECs under ST and OS conditions. In conclusion, the present work compared the whole transcriptome of HCAECs under different shear stress conditions at the transcriptome level as well as at the individual gene level. We found that cultured ECs are significantly different from those under LS conditions. Thus using cells under ST conditions is unlikely to elucidate endothelial physiology. Given the revealed high similarities of the endothelial transcriptome under OS and ST conditions, it may be helpful to understand the underlying mechanisms of OS-induced endothelial dysfunction from static cultured endothelial studies.

摘要

动脉粥样硬化是一种多因素疾病,优先在动脉树的特定区域发展。这种特征主要归因于体内独特的血流切应力模式。直腔中的高层流切应力(LS)产生抗动脉粥样硬化作用。曲率较小和动脉分叉处的低切应力或振荡切应力(OS)易使动脉内膜发生动脉粥样硬化。切应力调节的内皮功能在动脉粥样硬化过程中起着重要作用。大多数专注于内皮功能分子机制的体外研究都是在培养的静态(ST)条件下的内皮细胞(ECs)中进行的。然而,由于缺少生物力学环境,许多发现并不能在随后的转化研究中得到重现。在这里,我们通过 RNA 测序分析了在不同切应力条件下的原代人冠状动脉内皮细胞(HCAECs)的全转录组。在 16313 个表达良好的基因中,我们检测到 8177 个在 OS 与 LS 条件下差异表达的基因和 9369 个在 ST 与 LS 条件下差异表达的基因。值得注意的是,只有 1618 个基因在 OS 与 ST 条件下差异表达。ECs 的层次聚类分析表明,在转录组水平上,OS 条件下的 ECs 与 ST 条件下的 ECs 具有很强的相似性。随后的两两热图和主成分分析进一步证明了这种相似性。在单个基因水平上,代表性的著名基因和新基因的表达分析表明,在 ST 和 OS 条件下,ECs 中的 mRNA 和蛋白质水平相当。总之,本研究在转录组水平以及单个基因水平上比较了不同切应力条件下 HCAECs 的全转录组。我们发现培养的 ECs 与 LS 条件下的 ECs 有很大的不同。因此,使用 ST 条件下的细胞不太可能阐明内皮生理学。鉴于 OS 和 ST 条件下内皮转录组的高度相似性,从静态培养的内皮研究中理解 OS 诱导的内皮功能障碍的潜在机制可能会有所帮助。

相似文献

引用本文的文献

7
Vascular mechanotransduction.血管力学转导。
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.

本文引用的文献

1
The Economics of Reproducibility in Preclinical Research.临床前研究中的可重复性经济学
PLoS Biol. 2015 Jun 9;13(6):e1002165. doi: 10.1371/journal.pbio.1002165. eCollection 2015 Jun.
9
Long non-coding RNAs: insights into functions.长链非编码RNA:功能洞察
Nat Rev Genet. 2009 Mar;10(3):155-9. doi: 10.1038/nrg2521.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验