Bouyer Michael, Guillot Raphael, Lavaud Jonathan, Plettinx Cedric, Olivier Cécile, Curry Véronique, Boutonnat Jean, Coll Jean-Luc, Peyrin Françoise, Josserand Véronique, Bettega Georges, Picart Catherine
CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Service de chirurgie plastique et maxillo-faciale, Centre Hospitalier Universitaire de Grenoble, France.
CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France.
Biomaterials. 2016 Oct;104:168-81. doi: 10.1016/j.biomaterials.2016.06.001. Epub 2016 Jun 29.
The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine.
大型非愈合性骨缺损的快速有效骨再生仍然具有挑战性。生物活性蛋白,如骨形态发生蛋白(BMP)-2,已被证明具有骨诱导活性,但其临床应用目前仅限于以胶原蛋白作为生物材料。能够从任何其他生物材料中递送BMP-2将扩大其临床应用范围。这项工作提出了一种新颖的方法,通过将骨诱导表面涂层(二维)与由市售聚乳酸-羟基乙酸共聚物(PLGA)制成的聚合物支架(三维空心管)相结合,修复大鼠股骨临界尺寸的体积性骨缺损。使用聚电解质膜作为BMP-2载体,我们通过控制膜的交联程度和溶液中BMP-2的初始浓度,在很大程度上调节了聚电解质膜涂层中加载和释放的BMP-2量。通过微计算机断层扫描和对再生骨生长动力学的定量分析,我们表明新形成的骨量和动力学可以被调节:在最佳条件下,1-2周内可实现有效且快速的修复,包括完全缺损桥接、形成血管化和矿化的骨组织。组织学染色和高分辨率计算机断层扫描显示,在管内和管周围存在骨再生,小梁样骨和皮质骨具有空间上不同的组织结构。皮质骨的量及其厚度随BMP-2剂量的增加而增加。鉴于增材制造技术的最新发展,这种表面涂层技术可与各种类型的聚合物或金属支架结合应用,为个性化医学中的骨再生提供新的视角。