Barbot Mariam, Meinecke Michael
Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany.
Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; European Neuroscience Institute Göttingen, 37077 Göttingen, Germany; Göttinger Zentrum für Molekulare Biowissenschaften, Germany.
J Struct Biol. 2016 Oct;196(1):20-28. doi: 10.1016/j.jsb.2016.07.014. Epub 2016 Jul 25.
Biological membranes exhibit function-related shapes, leading to a plethora of complex and beautiful cell and cell organellar morphologies. Most if not all of these structures have evolved for a particular physiological reason. The shapes of these structures are formed by physical forces that operate on membranes. To create particular shaped cells and cell organelles, membranes must undergo deformations which are determined by the structure and elasticity of the membrane and this process is most probable driven by proteins, lipids and/or interplay of both Zimmerberg and Kozlov (2006). Therefore, an important question of current cell biology in conjunction with physics and mathematics is to elucidate the functional cause for these different membrane morphologies as well as how they are formed. One of the most peculiar membrane shapes is observed in mitochondria. These organelles are surrounded by two membranes and especially the convoluted inner membrane displays a complex ultra-structure. A molecular understanding of how this membrane is shaped is missing to a large extent. Unlike membrane remodeling in classical curvature-dependent processes like clathrin-mediated endocytosis, mitochondria are most likely shaped by integral membrane proteins. Following, we will review the current knowledge of inner mitochondrial membrane architecture and discuss recent findings and advances in understanding the factors that shape this membrane. We will address pending questions especially with regard to the experimentally challenging nature of investigating membrane bending by hydrophobic integral membrane proteins.
生物膜呈现出与功能相关的形状,从而产生了大量复杂而美妙的细胞及细胞器形态。这些结构中的大多数(如果不是全部的话)都是出于特定的生理原因而进化形成的。这些结构的形状是由作用于膜的物理力所形成的。为了形成特定形状的细胞和细胞器,膜必须经历变形,而这种变形由膜的结构和弹性所决定,并且这个过程很可能是由蛋白质、脂质和/或两者的相互作用驱动的(齐默伯格和科兹洛夫,2006年)。因此,当前细胞生物学与物理学和数学相结合的一个重要问题是阐明这些不同膜形态的功能原因以及它们是如何形成的。线粒体中观察到的最奇特的膜形状之一。这些细胞器被两层膜包围,尤其是盘绕的内膜呈现出复杂的超微结构。在很大程度上,人们还缺乏对这种膜如何形成形状的分子理解。与网格蛋白介导的内吞作用等经典曲率依赖性过程中的膜重塑不同,线粒体很可能是由整合膜蛋白塑造的。接下来,我们将回顾目前关于线粒体内膜结构的知识,并讨论在理解塑造这种膜的因素方面的最新发现和进展。我们将解决悬而未决的问题,特别是关于研究疏水整合膜蛋白引起的膜弯曲所面临的实验挑战。