Horvath Susanne E, Rampelt Heike, Oeljeklaus Silke, Warscheid Bettina, van der Laan Martin, Pfanner Nikolaus
Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104, Freiburg, Germany.
Protein Sci. 2015 Mar;24(3):277-97. doi: 10.1002/pro.2625. Epub 2015 Feb 12.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.
线粒体从细胞质中导入1000多种不同的蛋白质。这些蛋白质在细胞质核糖体上以前体形式合成,并通过线粒体膜的蛋白质转运机制进行转运。现已确定了五种主要的蛋白质导入线粒体的途径。大多数途径利用线粒体外膜转位酶(TOM)作为进入线粒体的入口。根据前体中包含的特定信号,蛋白质随后被转移到不同的线粒体内转位酶。在本文中,我们讨论了蛋白质导入与线粒体膜结构之间的联系。线粒体有两层膜。内膜和外膜之间的接触位点是如何形成的,以及这些接触位点在蛋白质前体的转运中起什么作用,这是一个长期存在的问题。一个主要的转运接触位点是在TOM复合体和内膜的前序列转位酶(TIM23复合体)之间形成的,促进携带前序列的前体蛋白转移到线粒体内膜和基质中。最近的研究结果导致了涉及线粒体内膜接触位点和嵴组织系统(MICOS)的接触位点的发现。MICOS起着双重作用。它对于维持内膜嵴结构至关重要,并与外膜形成接触位点,促进前体蛋白转运到线粒体的膜间隙和外膜。一种新出现的观点认为,线粒体蛋白质转位酶并非独立发挥作用,而是嵌入在一个与控制线粒体活性和结构的机制相互作用的网络中。