Nietzel Thomas, Mostertz Jörg, Hochgräfe Falko, Schwarzländer Markus
Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany.
Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, F.-L.-Jahnstrasse 15, 17489 Greifswald, Germany.
Mitochondrion. 2017 Mar;33:72-83. doi: 10.1016/j.mito.2016.07.010. Epub 2016 Jul 22.
Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals.
线粒体是细胞氧化还原生物化学的热点。呼吸作用作为线粒体的一项决定性功能,由一系列电子传递组成,这些电子传递最终与维持质子动力、ATP生成和细胞能量供应相偶联。所涉及的各个反应步骤需要严格控制和灵活调节,以在需求波动的情况下维持细胞内的能量和氧化还原平衡。通过硫醇开关进行的氧化还原调节一直是一种长期存在的候选机制,以支持线粒体蛋白功能在翻译后水平的快速调节。在此,我们综述了我们对线粒体蛋白质组中半胱氨酸硫醇开关理解的最新进展,重点关注它们在体内的运作。我们评估了线粒体中硫醇开关的概念基础,并讨论了从体外研究中获得的见解在体内可能有效的程度,同时考虑热力学、动力学和结构限制。我们比较了用于评估线粒体蛋白硫醇开关的功能蛋白质组学方法,包括硫氧还蛋白捕获、氧化还原差异凝胶电泳(redoxDIGE)、同位素编码亲和标签(OxICAT)和碘乙酰串联质量标签(iodoTMT)标记策略。我们讨论了可能有利于体内线粒体蛋白质组中活性硫醇开关的条件,并评估了使用体内氧化还原传感和定量氧化还原蛋白质组学相结合来剖析其影响的最新进展。最后,我们关注线粒体生物学的四个核心方面,即衰老、碳代谢、能量偶联和电子传递,举例说明了目前在对活的动植物中线粒体通过硫醇开关进行调节的机制理解方面的新进展。