Chiou Kevin K, Rocks Jason W, Chen Christina Yingxian, Cho Sangkyun, Merkus Koen E, Rajaratnam Anjali, Robison Patrick, Tewari Manorama, Vogel Kenneth, Majkut Stephanie F, Prosser Benjamin L, Discher Dennis E, Liu Andrea J
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104;
Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8939-44. doi: 10.1073/pnas.1520428113. Epub 2016 Jul 25.
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.
在跳动的心脏中,心肌细胞(CMs)以协调的方式收缩,产生收缩波前峰,每次心跳时这些波前峰在心脏中传播。协调这种波前峰需要心肌细胞之间快速且强大的信号传导机制。长期以来,主要的信号传导机制被认为是电信号:缝隙连接在心肌细胞之间传导离子,触发膜去极化、细胞内钙释放以及肌动球蛋白收缩。相比之下,我们在此提出,在早期胚胎心脏管中,协调心跳的信号传导机制是机械性的而非电性的。我们提出一个简单的生物物理模型,其中心肌细胞是嵌入细胞外基质(ECM)中的机械可兴奋内含物,细胞外基质被建模为弹性 - 流体双相材料。我们的模型预测,在孤立心脏的心跳速度和应变以及水凝胶培养的心肌细胞的应变方面,都强烈依赖于刚度,这与最近的实验在定量上是一致的。我们通过用缝隙连接阻滞剂β - 甘草次酸(BGA)灌注完整的成年和胚胎心脏来破坏电传导,从而对我们的模型进行实验验证。我们发现这种处理会导致成年心脏迅速衰竭,但胚胎心脏不会,这与我们的假设一致。最后,我们的模型预测了传播机械协调波前峰所需的最小基质刚度。预测值与我们在心跳开始时的刚度测量结果相符,表明机械信号传导可能引发了最初的心跳。