Suppr超能文献

局部组织力学控制心脏起搏细胞胚胎模式形成。

Local tissue mechanics control cardiac pacemaker cell embryonic patterning.

机构信息

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Life Sci Alliance. 2023 Mar 27;6(6). doi: 10.26508/lsa.202201799. Print 2023 Jun.

Abstract

Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.

摘要

心脏起搏细胞 (CPCs) 产生电脉冲,驱动心脏有节奏地跳动。CPC 位于一种称为窦房结 (SAN) 的异质、富含细胞外基质的微环境中。令人惊讶的是,人们对 SAN 的生化组成或机械性能知之甚少,以及心脏中这一区域存在的独特结构特征如何影响 CPC 功能仍知之甚少。在这里,我们已经确定 SAN 的发育涉及构建一种“柔软”的大分子细胞外基质,该基质专门包裹 CPC。此外,我们还证明,使胚胎 CPC 承受高于体内测量值的基质硬度会导致连贯的电振荡丧失,以及调节 CPC 自发性所需的 HCN4 和 NCX1 离子通道失调。总的来说,这些数据表明局部力学在维持胚胎 CPC 功能方面起着关键作用,同时也定量定义了最适合胚胎 CPC 成熟的材料性能范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8d4/10043993/9fceedb355e0/LSA-2022-01799_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验