McWilliams Thomas G, Prescott Alan R, Allen George F G, Tamjar Jevgenia, Munson Michael J, Thomson Calum, Muqit Miratul M K, Ganley Ian G
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 9SY, Scotland, UK.
Division of Cell Signalling and Immunology, University of Dundee, Dundee DD1 9SY, Scotland, UK Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 9SY, Scotland, UK.
J Cell Biol. 2016 Aug 1;214(3):333-45. doi: 10.1083/jcb.201603039. Epub 2016 Jul 25.
Autophagic turnover of mitochondria, termed mitophagy, is proposed to be an essential quality-control (QC) mechanism of pathophysiological relevance in mammals. However, if and how mitophagy proceeds within specific cellular subtypes in vivo remains unclear, largely because of a lack of tractable tools and models. To address this, we have developed "mito-QC," a transgenic mouse with a pH-sensitive fluorescent mitochondrial signal. This allows the assessment of mitophagy and mitochondrial architecture in vivo. Using confocal microscopy, we demonstrate that mito-QC is compatible with classical and contemporary techniques in histochemistry and allows unambiguous in vivo detection of mitophagy and mitochondrial morphology at single-cell resolution within multiple organ systems. Strikingly, our model uncovers highly enriched and differential zones of mitophagy in the developing heart and within specific cells of the adult kidney. mito-QC is an experimentally advantageous tool of broad relevance to cell biology researchers within both discovery-based and translational research communities.
线粒体的自噬周转,即线粒体自噬,被认为是哺乳动物体内一种具有病理生理相关性的重要质量控制(QC)机制。然而,线粒体自噬在体内特定细胞亚型中是否以及如何进行仍不清楚,这主要是由于缺乏易于处理的工具和模型。为了解决这个问题,我们开发了“mito-QC”,一种具有pH敏感荧光线粒体信号的转基因小鼠。这使得在体内评估线粒体自噬和线粒体结构成为可能。利用共聚焦显微镜,我们证明mito-QC与组织化学中的经典和当代技术兼容,并允许在多个器官系统内以单细胞分辨率在体内明确检测线粒体自噬和线粒体形态。引人注目的是,我们的模型揭示了发育中心脏和成年肾脏特定细胞内高度富集和不同的线粒体自噬区域。mito-QC是一种在实验上具有优势的工具,对基于发现的研究和转化研究领域的细胞生物学研究人员都具有广泛的相关性。