Reen F Jerry, Phelan John P, Gallagher Lorna, Woods David F, Shanahan Rachel M, Cano Rafael, Ó Muimhneacháin Eoin, McGlacken Gerard P, O'Gara Fergal
Biomerit Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
School of Chemistry and Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork-National University of Ireland, Cork, Ireland.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5894-905. doi: 10.1128/AAC.00190-16. Print 2016 Oct.
A rapid decline in the development of new antimicrobial therapeutics has coincided with the emergence of new and more aggressive multidrug-resistant pathogens. Pathogens are protected from antibiotic activity by their ability to enter an aggregative biofilm state. Therefore, disrupting this process in pathogens is a key strategy for the development of next-generation antimicrobials. Here, we present a suite of compounds, based on the Pseudomonas aeruginosa 2-heptyl-4(1H)-quinolone (HHQ) core quinolone interkingdom signal structure, that exhibit noncytotoxic antibiofilm activity toward the fungal pathogen Candida albicans In addition to providing new insights into what is a clinically important bacterium-fungus interaction, the capacity to modularize the functionality of the quinolone signals is an important advance in harnessing the therapeutic potential of signaling molecules in general. This provides a platform for the development of potent next-generation small-molecule therapeutics targeting clinically relevant fungal pathogens.
新型抗菌疗法研发的迅速衰退与新型且更具侵袭性的多重耐药病原体的出现恰好同时发生。病原体能够进入聚集性生物膜状态,从而免受抗生素活性的影响。因此,破坏病原体中的这一过程是开发新一代抗菌药物的关键策略。在此,我们展示了一组基于铜绿假单胞菌2-庚基-4(1H)-喹诺酮(HHQ)核心喹诺酮种间信号结构的化合物,它们对真菌病原体白色念珠菌表现出无细胞毒性的抗生物膜活性。除了为临床上重要的细菌-真菌相互作用提供新的见解外,对喹诺酮信号功能进行模块化的能力总体上是在利用信号分子治疗潜力方面的一项重要进展。这为开发针对临床相关真菌病原体的强效新一代小分子疗法提供了一个平台。