Suppr超能文献

慢性病患者使用补充和替代医学的情况及旷工情况

Complementary and alternative medicine use and absenteeism among individuals with chronic disease.

作者信息

Mongiovi Jennifer, Shi Zaixing, Greenlee Heather

机构信息

Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 703, New York, NY, 10032, USA.

Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.

出版信息

BMC Complement Altern Med. 2016 Jul 27;16:248. doi: 10.1186/s12906-016-1195-9.

Abstract

BACKGROUND

It is estimated that over half of the adult U.S. population currently has one or more chronic conditions, resulting in up to an estimated $1,600 in productivity loss annually for each employee with chronic disease. Previous studies have suggested that integrating alternative or complementary health approaches with conventional medicine may be beneficial for managing the symptoms, lifestyle changes, treatment, physical and psychosocial consequences that result from chronic illness.

METHODS

Using the 2012 National Health Interview Survey Data, we examined the associations between self-reported use of various forms of complementary and alternative medicine (CAM) therapies (dietary supplements, mind-body practices) and the number of days missed from job or business in the past 12 months due to illness or injury. Multivariable Poisson regression was used to determine the association between CAM use and absence from work among individuals with one or more chronic disease (n = 10,196).

RESULTS

Over half (54 %) of the study population reported having one chronic disease, while 19 % had three or more conditions. The three most common chronic diseases were high cholesterol (48 %), arthritis (35 %) and hypertension (31 %). More participants used dietary supplements (72 %) while fewer individuals reported using mind-body practices (17 %) in the past twelve months. Over half of individuals reported missing any number of days from job or business due to illness or injury (53 %). Of those who had missed any days from work, 42 % missed one or two days, 36 % missed three to five days, and 23 % missed six days or more. The rate of missing days from job or business due to injury or illness increased among those who reported use of mind-body practices (Incidence Rate Ratio (IRR) = 1.55, 95 % CI: 1.09, 2.21). There was no association between use of dietary supplements and absenteeism (IRR = 1.13, 95 % CI: 0.85, 1.51).

CONCLUSIONS

In a population of individuals with chronic disease, individuals who reported use of mind-body practices had higher rate of absenteeism due to injury or illness. Future studies should examine the effects CAM on symptoms associated with chronic disease and whether managing these symptoms can reduce absence from work, school, and other responsibilities.

摘要

背景

据估计,目前美国超过半数的成年人口患有一种或多种慢性病,这导致每名患有慢性病的员工每年估计有高达1600美元的生产力损失。先前的研究表明,将替代或补充健康方法与传统医学相结合,可能有助于管理慢性病导致的症状、生活方式改变、治疗、身体和心理社会后果。

方法

我们使用2012年美国国家健康访谈调查数据,研究了自我报告使用各种形式的补充和替代医学(CAM)疗法(膳食补充剂、身心疗法)与过去12个月因疾病或受伤而缺勤的天数之间的关联。多变量泊松回归用于确定在患有一种或多种慢性病的个体(n = 10196)中,使用CAM与缺勤之间的关联。

结果

超过半数(54%)的研究人群报告患有一种慢性病,而19%的人患有三种或更多疾病。三种最常见的慢性病是高胆固醇(48%)、关节炎(35%)和高血压(31%)。在过去十二个月中,更多参与者使用膳食补充剂(72%),而报告使用身心疗法的个体较少(17%)。超过半数的个体报告因疾病或受伤而缺勤(53%)。在那些缺勤的人中,42%缺勤一到两天,36%缺勤三到五天,23%缺勤六天或更多。报告使用身心疗法的人因受伤或疾病而缺勤的天数比例增加(发病率比值(IRR)= 1.55,95%置信区间:1.09,2.21)。使用膳食补充剂与缺勤之间没有关联(IRR = 1.13,95%置信区间:0.85,1.51)。

结论

在患有慢性病的人群中,报告使用身心疗法的个体因受伤或疾病而缺勤的比例更高。未来的研究应检查补充和替代医学对与慢性病相关症状的影响,以及管理这些症状是否可以减少缺勤、缺课和其他职责。

相似文献

2
Alternative medicine, worker health, and absenteeism in the United States.
Complement Ther Med. 2017 Jun;32:116-128. doi: 10.1016/j.ctim.2016.11.003. Epub 2016 Nov 18.

引用本文的文献

8
Understanding CAM Use in Lebanon: Findings from a National Survey.了解黎巴嫩的补充替代医学使用情况:一项全国性调查的结果
Evid Based Complement Alternat Med. 2018 Jul 25;2018:4169159. doi: 10.1155/2018/4169159. eCollection 2018.

本文引用的文献

5
State-level estimates of obesity-attributable costs of absenteeism.因肥胖导致旷工成本的州级估算。
J Occup Environ Med. 2014 Nov;56(11):1120-7. doi: 10.1097/JOM.0000000000000298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验