Mehta-Lee Shilpi S, Palma Anton, Bernstein Peter S, Lounsbury David, Schlecht Nicolas F
Maternal Fetal Care Center, Department of Obstetrics and Gynecology, NYU/Langone Medical Center, 150 East 32nd St., Suite 101, New York, NY, 10016, USA.
Department of Epidemiology and Public Health, Columbia University Medical Center, New York, NY, USA.
Matern Child Health J. 2017 Jan;21(1):118-127. doi: 10.1007/s10995-016-2100-3.
Objective Preterm birth is a leading cause of perinatal morbidity and mortality. Prevention strategies rarely focus on preconception care. We sought to create a preconception nomogram that identifies nonpregnant women at highest risk for preterm birth using the Pregnancy Risk Assessment Monitoring System (PRAMS) surveillance data. Methods We used PRAMS data from 2004 to 2009. The odds ratios (ORs) of preterm birth for each preconception variable was estimated and adjusted analyses were conducted. We created a validated nomogram predicting the probability of preterm birth using multivariate logistic regression coefficients. Results 192,208 cases met inclusion criteria. Demographic/maternal health characteristics and associations with preterm birth and ORs are reported. After validation, we identified the following significant predictors of preterm birth: prior history of preterm birth or low birth weight baby, prior spontaneous or elective abortion, maternal diabetes prior to conception, maternal race (e.g., non-Hispanic black), intention to get pregnant prior to conception (i.e., did not want or wanted it sooner), and smoking prior to conception (p < 0.05). Overall, our preconception preterm risk model correctly classified 76.1 % of preterm cases with a negative predictive value (NPV) of 76.7 %. A nomogram using a 0-100 scale illustrates our final preconception model for predicting preterm birth. Conclusion This preconception nomogram can be used by clinicians in multiple settings as a tool to help predict a woman's individual preterm birth risk and to triage high-risk non-pregnant women to preconception care. Future studies are needed to validate the nomogram in a clinical setting.
目的 早产是围产期发病和死亡的主要原因。预防策略很少关注孕前保健。我们试图利用妊娠风险评估监测系统(PRAMS)的监测数据创建一个孕前列线图,以识别早产风险最高的未怀孕女性。方法 我们使用了2004年至2009年的PRAMS数据。估计每个孕前变量的早产比值比(OR)并进行调整分析。我们使用多变量逻辑回归系数创建了一个经过验证的预测早产概率的列线图。结果 192,208例病例符合纳入标准。报告了人口统计学/孕产妇健康特征以及与早产和OR的关联。经过验证,我们确定了以下早产的重要预测因素:早产或低体重儿的既往史、既往自然流产或人工流产、孕前母体糖尿病、母体种族(如非西班牙裔黑人)、孕前怀孕意愿(即不想要或想要更早怀孕)以及孕前吸烟(p<0.05)。总体而言,我们的孕前早产风险模型正确分类了76.1%的早产病例,阴性预测值(NPV)为76.7%。使用0-100刻度的列线图展示了我们最终的孕前预测早产模型。结论 临床医生可在多种环境中使用此孕前列线图作为工具,以帮助预测女性个体的早产风险,并将高危未怀孕女性分诊至孕前保健。未来需要进行研究以在临床环境中验证该列线图。