Suppr超能文献

神经网络的补偿型算法:稳定性与收敛性

Compensation type algorithms for neural nets: stability and convergence.

作者信息

Cromme L J, Dammasch I E

机构信息

Institut für Angewandte Mathematik, Universität Göttingen, Federal Republic of Germany.

出版信息

J Math Biol. 1989;27(3):327-40. doi: 10.1007/BF00275816.

Abstract

Plasticity of synaptic connections plays an important role in the temporal development of neural networks which are the basis of memory and behavior. The conditions for successful functional performance of these nerve nets have to be either guaranteed genetically or developed during ontogenesis. In the latter case, a general law of this development may be the successive compensation of disturbances. A compensation type algorithm is analyzed here that changes the connectivity of a given network such that deviations from each neuron's equilibrium state are reduced. The existence of compensated networks is proven, the convergence and stability of simulations are investigated, and implications for cognitive systems are discussed.

摘要

突触连接的可塑性在神经网络的时间发展中起着重要作用,而神经网络是记忆和行为的基础。这些神经网络成功发挥功能的条件必须要么由基因保证,要么在个体发育过程中形成。在后一种情况下,这种发育的一般规律可能是对干扰的连续补偿。本文分析了一种补偿型算法,该算法改变给定网络的连接性,从而减少与每个神经元平衡状态的偏差。证明了补偿网络的存在,研究了模拟的收敛性和稳定性,并讨论了其对认知系统的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验