Suppr超能文献

全基因组表达分析揭示了与重度抑郁症中艾司西酞普兰治疗反应相关的基因。

Whole-genome expression analysis reveals genes associated with treatment response to escitalopram in major depression.

作者信息

Pettai Kristi, Milani Lili, Tammiste Anu, Võsa Urmo, Kolde Raivo, Eller Triin, Nutt David, Metspalu Andres, Maron Eduard

机构信息

Estonian Genome Center, University of Tartu, Estonia.

Institute of Computer Science, University of Tartu, Estonia; Quretec, Tartu, Estonia.

出版信息

Eur Neuropsychopharmacol. 2016 Sep;26(9):1475-1483. doi: 10.1016/j.euroneuro.2016.06.007. Epub 2016 Jul 22.

Abstract

The reasons for variability in treatment response in major depressive disorder (MDD) are not fully understood, but there is accumulating evidence suggesting that therapeutic outcomes of antidepressants can be influenced by genetic factors. In the present study we applied the microarray Illumina platform for whole genome expression profiling in depressive patients treated with escitalopram medication in order to identify genes underlying response to antidepressant treatment. The initial study sample consisted of 135 outpatients with major depressive disorder (mean age 31.1±11.6 years, 68% females) treated with escitalopram 10-20mg/day for 12 weeks, from which 87 patients (55 females) were included in gene expression analyzing. The gene expression profiles were measured on peripheral blood cells at baseline, at week 4 and at the end of treatment (week 12) using BeadChips Illumina. The fold change was used to demonstrate rate of changes in average gene expressions between studied groups. Statistical analyses were performed using the false discovery rate (FDR). The most interesting gene, which showed the predictive effect on treatment outcome by delineating low dose responders and treatment-resistant patients at the beginning of medication, was NLGN2, belonging to a family of neuronal cell surface proteins and involving in synapse formation. In addition, the several gene clusters, related to immune response, signal transduction and neurotrophin pathway, have distinguished responders from non-responders at the week 4 of treatment. After 4 weeks of escitalopram treatment (10mg/day), the YWHAZ gene has showed the highest transcriptional change in responders as compared with non-responders. Finally, at the end of the treatment we noticed that at least three genes (NR2C2, ZNF641, FKBP1A) have been strongly associated with resistance to escitalopram. Thus the results of this study support that exploration of peripheral gene expression is a useful tool in the further identification of novel genetic biomarkers for antidepressant treatment response.

摘要

重度抑郁症(MDD)治疗反应变异性的原因尚未完全明确,但越来越多的证据表明,遗传因素可能会影响抗抑郁药的治疗效果。在本研究中,我们应用Illumina微阵列平台,对接受艾司西酞普兰治疗的抑郁症患者进行全基因组表达谱分析,以确定抗抑郁治疗反应的潜在基因。初始研究样本包括135例重度抑郁症门诊患者(平均年龄31.1±11.6岁,68%为女性),他们接受10 - 20mg/天的艾司西酞普兰治疗12周,其中87例患者(55例女性)纳入基因表达分析。使用Illumina BeadChips在基线、第4周和治疗结束时(第12周)对外周血细胞进行基因表达谱测量。倍数变化用于显示研究组之间平均基因表达的变化率。采用错误发现率(FDR)进行统计分析。最有趣的基因是NLGN2,它在用药开始时通过区分低剂量反应者和治疗抵抗患者,对治疗结果显示出预测作用,NLGN2属于神经元细胞表面蛋白家族,参与突触形成。此外,在治疗第4周时,几个与免疫反应、信号转导和神经营养因子途径相关的基因簇,区分了反应者和无反应者。在艾司西酞普兰治疗4周(10mg/天)后,与无反应者相比,YWHAZ基因在反应者中显示出最高的转录变化。最后,在治疗结束时,我们注意到至少有三个基因(NR2C2、ZNF641、FKBP1A)与对艾司西酞普兰的抵抗密切相关。因此,本研究结果支持对外周基因表达的探索是进一步识别抗抑郁治疗反应新遗传生物标志物的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验