Suppr超能文献

基于现场可编程门阵列的同步多频电阻抗断层成像系统描述与首次应用

System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography.

作者信息

Aguiar Santos Susana, Robens Anne, Boehm Anna, Leonhardt Steffen, Teichmann Daniel

机构信息

Philips Chair for Medical Information Technology, RWTH Aachen University, Pauwelsstrasse 20, Aachen 52074, Germany.

出版信息

Sensors (Basel). 2016 Jul 25;16(8):1158. doi: 10.3390/s16081158.

Abstract

A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz-960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images.

摘要

本文介绍了一种新型多频电阻抗断层成像系统的原型。该系统采用现场可编程门阵列作为主控制器,并配置为通过复合波形同时在不同频率下进行测量。针对每个频率计算数据的实部和虚部,并通过以太网连接发送到个人计算机,在那里进行时差成像和频差成像的重建与可视化。该系统已在电阻/电容测试单元和自我实验中针对不同频率对集进行了时差和频差成像测试。据我们所知,这是第一项展示体内实验初步频差图像的工作。将时差成像结果与模拟结果进行了比较,结果表明,新原型在60 kHz至960 kHz的测试频率范围内均表现良好。对于频差图像,需要进一步开发算法并改进归一化过程,以正确重建和解释所得图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/502c/5017324/8b578bc9f1b7/sensors-16-01158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验