Suppr超能文献

用于定量磁化率成像的预处理全磁场反演(TFI)方法。

Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping.

作者信息

Liu Zhe, Kee Youngwook, Zhou Dong, Wang Yi, Spincemaille Pascal

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Department of Radiology, Weill Cornell Medical College, New York, New York, USA.

出版信息

Magn Reson Med. 2017 Jul;78(1):303-315. doi: 10.1002/mrm.26331. Epub 2016 Jul 28.

Abstract

PURPOSE

To investigate systematic errors in traditional quantitative susceptibility mapping (QSM) where background field removal and local field inversion (LFI) are performed sequentially, to develop a total field inversion (TFI) QSM method to reduce these errors, and to improve QSM quality in the presence of large susceptibility differences.

THEORY AND METHODS

The proposed TFI is a single optimization problem which simultaneously estimates the background and local fields, preventing error propagation from background field removal to QSM. To increase the computational speed, a new preconditioner is introduced and analyzed. TFI is compared with the traditional combination of background field removal and LFI in a numerical simulation and in phantom, 5 healthy subjects, and 18 patients with intracerebral hemorrhage.

RESULTS

Compared with the traditional method projection onto dipole fields+LFI, preconditioned TFI substantially reduced error in QSM along the air-tissue boundaries in simulation, generated high-quality in vivo QSM within similar processing time, and suppressed streaking artifacts in intracerebral hemorrhage QSM. Moreover, preconditioned TFI was capable of generating QSM for the entire head including the brain, air-filled sinus, skull, and fat.

CONCLUSION

Preconditioned total field inversion improves the accuracy of QSM over the traditional method where background and local fields are separately estimated. Magn Reson Med 78:303-315, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

研究传统定量磁化率映射(QSM)中系统误差,其中背景场去除和局部场反转(LFI)是顺序进行的;开发一种总场反转(TFI)QSM方法以减少这些误差,并在存在较大磁化率差异的情况下提高QSM质量。

理论与方法

所提出的TFI是一个单一优化问题,可同时估计背景场和局部场,防止误差从背景场去除传播到QSM。为提高计算速度,引入并分析了一种新的预处理器。在数值模拟、体模、5名健康受试者和18名脑出血患者中,将TFI与传统的背景场去除和LFI组合进行比较。

结果

与传统方法(偶极场投影+LFI)相比,预处理后的TFI在模拟中显著降低了沿空气-组织边界的QSM误差,在相似处理时间内生成了高质量的体内QSM,并抑制了脑出血QSM中的条纹伪影。此外,预处理后的TFI能够为包括脑、气窦、颅骨和脂肪在内的整个头部生成QSM。

结论

与分别估计背景场和局部场的传统方法相比,预处理后的总场反转提高了QSM的准确性。《磁共振医学》78:303 - 315,2017。©2016国际磁共振医学学会。

相似文献

2
Weak-harmonic regularization for quantitative susceptibility mapping.弱谐正则化用于定量磁化率映射。
Magn Reson Med. 2019 Feb;81(2):1399-1411. doi: 10.1002/mrm.27483. Epub 2018 Sep 28.

引用本文的文献

8
QSM Throughout the Body.全身定量磁化率(QSM)
J Magn Reson Imaging. 2023 Jun;57(6):1621-1640. doi: 10.1002/jmri.28624. Epub 2023 Feb 7.

本文引用的文献

7
Susceptibility mapping of air, bone, and calcium in the head.头部空气、骨骼和钙的敏感性图谱。
Magn Reson Med. 2015 Jun;73(6):2185-94. doi: 10.1002/mrm.25350. Epub 2014 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验