Suppr超能文献

基于参考组织约束的数据自适应正则化在肝脏定量磁化率映射中的应用。

Data adaptive regularization with reference tissue constraints for liver quantitative susceptibility mapping.

机构信息

Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.

Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2023 Aug;90(2):385-399. doi: 10.1002/mrm.29644. Epub 2023 Mar 17.

Abstract

PURPOSE

To improve repeatability and reproducibility across acquisition parameters and reduce bias in quantitative susceptibility mapping (QSM) of the liver, through development of an optimized regularized reconstruction algorithm for abdominal QSM.

METHODS

An optimized approach to estimation of magnetic susceptibility distribution is formulated as a constrained reconstruction problem that incorporates estimates of the input data reliability and anatomical priors available from chemical shift-encoded imaging. The proposed data-adaptive method was evaluated with respect to bias, repeatability, and reproducibility in a patient population with a wide range of liver iron concentration (LIC). The proposed method was compared to the previously proposed and validated approach in liver QSM for two multi-echo spoiled gradient-recalled echo protocols with different acquisition parameters at 3T. Linear regression was used for evaluation of QSM methods against a reference FDA-approved -based LIC measure and measurements; repeatability/reproducibility were assessed by Bland-Altman analysis.

RESULTS

The data-adaptive method produced susceptibility maps with higher subjective quality due to reduced shading artifacts. For both acquisition protocols, higher linear correlation with both - and -based measurements were observed for the data-adaptive method ( for , for ) than the standard method ( and ). For both protocols, the data-adaptive method enabled better test-retest repeatability (repeatability coefficients 0.19/0.30 ppm for the data-adaptive method, 0.38/0.47 ppm for the standard method) and reproducibility across protocols (reproducibility coefficient 0.28 vs. 0.53ppm) than the standard method.

CONCLUSIONS

The proposed data-adaptive QSM algorithm may enable quantification of LIC with improved repeatability/reproducibility across different acquisition parameters as 3T.

摘要

目的

通过开发一种优化的正则化重建算法,提高腹部定量磁化率映射(QSM)在采集参数间的可重复性和再现性,并减少其在肝脏中的偏倚。

方法

将磁敏感分布的估计问题表示为一个约束重建问题,该问题包含输入数据可靠性的估计以及来自化学位移编码成像的解剖先验知识。在肝脏铁浓度(LIC)范围广泛的患者人群中,评估了所提出的基于数据的方法在偏倚、重复性和再现性方面的性能。在所提出的方法中,将其与先前提出并在 3T 下两种不同采集参数的多回波扰相梯度回波协议中的肝脏 QSM 中验证的方法进行了比较。使用线性回归来评估 QSM 方法与 FDA 批准的基于 的 LIC 测量值和 测量值的相关性;通过 Bland-Altman 分析评估重复性/再现性。

结果

由于阴影伪影的减少,基于数据的方法产生的磁化率图具有更高的主观质量。对于两种采集协议,基于数据的方法与基于 和 的测量值都具有更高的线性相关性( 为 , 为 ),而标准方法则相关性较低( 和 )。对于两种协议,基于数据的方法均实现了更好的测试-再测试重复性(基于数据的方法的重复性系数分别为 0.19/0.30ppm 和 0.38/0.47ppm,而标准方法的重复性系数分别为 0.58/0.73ppm 和 0.53/0.66ppm)和在不同采集参数间的再现性(再现性系数 0.28 与 0.53ppm),优于标准方法。

结论

所提出的基于数据的 QSM 算法可以实现 LIC 的定量测量,提高了在不同采集参数间的重复性和再现性。

相似文献

4
Rapid automated liver quantitative susceptibility mapping.快速自动化肝脏定量磁化率映射。
J Magn Reson Imaging. 2019 Sep;50(3):725-732. doi: 10.1002/jmri.26632. Epub 2019 Jan 13.

本文引用的文献

9
Rapid automated liver quantitative susceptibility mapping.快速自动化肝脏定量磁化率映射。
J Magn Reson Imaging. 2019 Sep;50(3):725-732. doi: 10.1002/jmri.26632. Epub 2019 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验